scholarly journals Precision SMEFT bounds from the VBF Higgs at high transverse momentum

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Shankha Banerjee ◽  
Rick S. Gupta ◽  
Michael Spannowsky

Abstract We study the production of Higgs bosons at high transverse momenta via vector-boson fusion (VBF) in the Standard Model Effective Field Theory (SMEFT). We find that contributions from four independent operator combinations dominate in this limit. These are the same ‘high energy primaries’ that control high energy diboson processes, including Higgs-strahlung. We perform detailed collider simulations for the diphoton decay mode of the Higgs boson as well as the three final states arising from the ditau channel. Using the quadratic growth of the SMEFT contributions relative to the Standard Model (SM) contribution, we project very stringent bounds on these operators that far surpass the corresponding bounds from the LEP experiment.

2018 ◽  
Vol 46 ◽  
pp. 1860058
Author(s):  
Ye Chen

Latest results of searches for heavy Higgs bosons in fermionic final states are presented using the CMS detector at the LHC. Results are based on pp collision data collected at centre-of-mass energies of 8 and 13 TeV which have been interpreted according to different extensions of the Standard Model such as MSSM, 2HDM, and NMSSM. These searches look for evidence of other scalar or pseudoscalar bosons, in addition to the observed SM-like 125 GeV Higgs boson, and set 95% confidence level upper limits in fermionic final states and benchmark models explored. The talk reviews briefly the major results obtained by the CMS Collaboration during Run I, and presents the most recent searches performed during Run II.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Maximilian Ruhdorfer ◽  
Ennio Salvioni ◽  
Andreas Weiler

We study for the first time the collider reach on the derivative Higgs portal, the leading effective interaction that couples a pseudo Nambu-Goldstone boson (pNGB) scalar Dark Matter to the Standard Model. We focus on Dark Matter pair production through an off-shell Higgs boson, which is analyzed in the vector boson fusion channel. A variety of future high-energy lepton colliders as well as hadron colliders are considered, including CLIC, a muon collider, the High-Luminosity and High-Energy versions of the LHC, and FCC-hh. Implications on the parameter space of pNGB Dark Matter are discussed. In addition, we give improved and extended results for the collider reach on the marginal Higgs portal, under the assumption that the new scalars escape the detector, as motivated by a variety of beyond the Standard Model scenarios.


2001 ◽  
Vol 16 (supp01a) ◽  
pp. 92-103 ◽  
Author(s):  
R. L. Culbertson

The search for physics beyond the Standard Model includes Technicolor particles, Higgs Bosons, compositeness, many variations of Supersymmetry, large extra dimensions, model-independent searches for anomalies, and other topics. This article reports a subset of these ongoing searches at the high-energy colliders, Tevatron, HERA and LEP.


1993 ◽  
Vol 08 (33) ◽  
pp. 3129-3138 ◽  
Author(s):  
YU. F. PIROGOV

The linearization of the nonlinear standard model G/H= SU(3) L × U(1)/SU(2) L × U(1) via the hidden local symmetry H loc = SU(2) L × U(1) is considered. Mixing of the light elementary gauge bosons of the standard model with the dynamically generated heavy composite vector bosons is studied under the hypothesis of vector boson dominance. The model is theoretically consistent as quantum field theory and phenomenologically acceptable. It can be used as a guide to study systematically the deviations from the standard model due to a common substructure of leptons, quarks and Higgs bosons.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jason Aebischer ◽  
Christoph Bobeth ◽  
Andrzej J. Buras ◽  
Jacky Kumar ◽  
Mikołaj Misiak

Abstract We reconsider the complete set of four-quark operators in the Weak Effective Theory (WET) for non-leptonic ∆F = 1 decays that govern s → d and b → d, s transitions in the Standard Model (SM) and beyond, at the Next-to-Leading Order (NLO) in QCD. We discuss cases with different numbers Nf of active flavours, intermediate threshold corrections, as well as the issue of transformations between operator bases beyond leading order to facilitate the matching to high-energy completions or the Standard Model Effective Field Theory (SMEFT) at the electroweak scale. As a first step towards a SMEFT NLO analysis of K → ππ and non-leptonic B-meson decays, we calculate the relevant WET Wilson coefficients including two-loop contributions to their renormalization group running, and express them in terms of the Wilson coefficients in a particular operator basis for which the one-loop matching to SMEFT is already known.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Xing-Fu Su ◽  
You-Ying Li ◽  
Rosy Nicolaidou ◽  
Min Chen ◽  
Hsin-Yeh Wu ◽  
...  

AbstractNon-local extensions of the Standard Model with a non-locality scale $$\varLambda _{NL}$$ Λ NL have the effect of smearing the pointlike vertices of the Standard Model. At energies significantly lower than $$\varLambda _{NL}$$ Λ NL vertices appear pointlike, while beyond this scale all beta functions vanish and all couplings approach a fixed point leading to scale invariance. Non-local SM extensions are ghost free, with the non-locality scale serving as an effective cutoff to radiative corrections of the Higgs mass. We argue that the data expected to be collected at the LHC phase 2 will have a sensitivity to non-local effects originating from a non-locality scale of a few TeV. Using an infinite derivative prescription, we study modifications to heavy vector-boson cross sections that can lead to an enhanced production of boosted Higgs bosons in a region of the kinematic phase space where the SM background is very small.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Sitian Qian ◽  
Congqiao Li ◽  
Qiang Li ◽  
Fanqiang Meng ◽  
Jie Xiao ◽  
...  

Abstract The LHCb Collaboration recently gave an update on testing lepton flavour universality with B+→ K+ℓ+ℓ−, in which a 3.1 standard deviations from the standard model prediction was observed. The g-2 experiment also reports a 3.3 standard deviations from the standard model on muon anomalous magnetic moment measurement. These deviations could be explained by introducing new particles including leptoquarks. In this paper, we show the possibility to search for heavy spin-1 leptoquarks at a future TeV scale muon collider by performing studies from three channels: 1) same flavour final states with either two bottom or two light quarks, 2) different flavour quark final states, and 3) a so-called “VXS” process representing the scattering between a vector boson and a leptoquark to probe the coupling between leptoquark and tau lepton. We conclude that a 3 TeV muon collider with 3 ab−1 of integrated luminosity is already sufficient to cover the leptoquark parameter space in order to explain the LHCb lepton flavour universality anomaly.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search is presented for the production of the Standard Model Higgs boson in association with a high-energy photon. With a focus on the vector-boson fusion process and the dominant Higgs boson decay into b-quark pairs, the search benefits from a large reduction of multijet background compared to more inclusive searches. Results are reported from the analysis of 132 fb−1 of pp collision data at $$ \sqrt{s} $$ s = 13 TeV collected with the ATLAS detector at the LHC. The measured Higgs boson signal yield in this final-state signature is 1.3 ± 1.0 times the Standard Model prediction. The observed significance of the Higgs boson signal above the background is 1.3 standard deviations, compared to an expected significance of 1.0 standard deviations.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Jiayin Gu ◽  
Lian-Tao Wang

Abstract The dispersion relation of an elastic 4-point amplitude in the forward direction leads to a sum rule that connects the low energy amplitude to the high energy observables. We perform a classification of these sum rules based on massless helicity amplitudes. With this classification, we are able to systematically write down the sum rules for the dimension-6 operators of the Standard Model Effective Field Theory (SMEFT), some of which are absent in previous literatures. These sum rules offer distinct insights on the relations between the operator coefficients in the EFT and the properties of the full theory that generates them. Their applicability goes beyond tree level, and in some cases can be used as a practical method of computing the one loop contributions to low energy observables. They also provide an interesting perspective for understanding the custodial symmetries of the SM Higgs and fermion sectors.


Sign in / Sign up

Export Citation Format

Share Document