scholarly journals Analytical solutions to renormalization-group equations of effective neutrino masses and mixing parameters in matter

2019 ◽  
Vol 2019 (5) ◽  
Author(s):  
Xin Wang ◽  
Shun Zhou
2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Tommy Ohlsson ◽  
Marcus Pernow

Abstract We consider a class of SO(10) models with flavor symmetries in the Yukawa sector and investigate their viability by performing numerical fits to the fermion masses and mixing parameters. The fitting procedure involves a top-down approach in which we solve the renormalization group equations from the scale of grand unification down to the electroweak scale. This allows the intermediate scale right-handed neutrinos and scalar triplet, involved in the type I and II seesaw mechanisms, to be integrated out at their corresponding mass scales, leading to a correct renormalization group running. The result is that, of the 14 models considered, only two are able to fit the known data well. Both these two models correspond to ℤ2 symmetries. In addition to being able to fit the fermion masses and mixing parameters, they provide predictions for the sum of light neutrino masses and the effective neutrinoless double beta decay mass parameter, which are both within current observational bounds.


2017 ◽  
Vol 32 (16) ◽  
pp. 1742004
Author(s):  
Jue Zhang ◽  
Shun Zhou

In light of the latest neutrino data, we revisit a minimal seesaw model with the Frampton–Glashow–Yanagida ansatz. Renormalization-group running effects on neutrino masses and flavor mixing parameters are discussed and found to essentially have no impact on testing such a minimal scenario in low-energy neutrino experiments. However, since renormalization-group running can modify neutrino mixing parameters at high energies, it does affect the leptogenesis mechanism, which is responsible for the observed matter–antimatter asymmetry in our Universe. Furthermore, to ease the conflict between the naturalness argument and the successful leptogenesis, a special regime for resonant leptogenesis is also emphasized.


2010 ◽  
Vol 25 (23) ◽  
pp. 4339-4384 ◽  
Author(s):  
SHAMAYITA RAY

We consider different extensions of the Standard Model which can give rise to the small active neutrino masses through seesaw mechanisms, and their mixing. These tiny neutrino masses are generated at some high energy scale by the heavy seesaw fields which then get sequentially decoupled to give an effective dimension-5 operator at the low energy. The renormalization group evolution of the masses and the mixing parameters of the three active neutrinos in the high energy as well as the low energy effective theory is reviewed in this paper.


1993 ◽  
Vol 316 (2-3) ◽  
pp. 312-317 ◽  
Author(s):  
Piotr H. Chankowski ◽  
Zbigniew Płuciennik

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yohei Ema ◽  
Kyohei Mukaida ◽  
Jorinde van de Vis

Abstract We derive one- and two-loop renormalization group equations (RGEs) of Higgs-R2 inflation. This model has a non-minimal coupling between the Higgs and the Ricci scalar and a Ricci scalar squared term on top of the standard model. The RGEs derived in this paper are valid as long as the energy scale of interest (in the Einstein frame) is below the Planck scale. We also discuss implications to the inflationary predictions and the electroweak vacuum metastability.


Sign in / Sign up

Export Citation Format

Share Document