yukawa sector
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Malte Lindestam ◽  
Tommy Ohlsson ◽  
Marcus Pernow

Abstract We investigate the options for imposing flavor symmetries on a minimal renormalizable non-supersymmetric SU(5) grand unified theory, without introducing additional flavor-related fields. Such symmetries reduce the number of free parameters in the model and therefore lead to more predictive models. We consider the Yukawa sector of the Lagrangian, and search for all possible flavor symmetries. As a result, we find 25 distinct realistic flavor symmetry cases, with ℤ2, ℤ3, ℤ4, and U(1) symmetries, and no non-Abelian cases.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
V. Suryanarayana Mummidi ◽  
Ketan M. Patel

Abstract A non-supersymmetric renormalizable SO(10) model is investigated for its viability in explaining the observed fermion masses and mixing parameters along with the baryon asymmetry produced via thermal leptogenesis. The Yukawa sector of the model consists of complex 10H and $$ {\overline{126}}_H $$ 126 ¯ H scalars with a Peccei-Quinn like symmetry and it leads to strong correlations among the Yukawa couplings of all the standard model fermions including the couplings and masses of the right-handed (RH) neutrinos. The latter implies the necessity to include the second lightest RH neutrino and flavor effects for the precision computation of leptogenesis. We use the most general density matrix equations to calculate the temperature evolution of flavoured leptonic asymmetry. A simplified analytical solution of these equations, applicable to the RH neutrino spectrum predicted in the model, is also obtained which allows one to fit the observed baryon to photon ratio along with the other fermion mass observables in a numerically efficient way. The analytical and numerical solutions are found to be in agreement within a factor of $$ \mathcal{O}(1) $$ O 1 . We find that the successful leptogenesis in this model does not prefer any particular value for leptonic Dirac and Majorana CP phases and the entire range of values of these observables is found to be consistent. The model specifically predicts (a) the lightest neutrino mass $$ {m}_{v_1} $$ m v 1 between 2–8 meV, (b) the effective mass of neutrinoless double beta decay mββ between 4–10 meV, and (c) a particular correlation between the Dirac and one of the Majorana CP phases.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Tommy Ohlsson ◽  
Marcus Pernow

Abstract We consider a class of SO(10) models with flavor symmetries in the Yukawa sector and investigate their viability by performing numerical fits to the fermion masses and mixing parameters. The fitting procedure involves a top-down approach in which we solve the renormalization group equations from the scale of grand unification down to the electroweak scale. This allows the intermediate scale right-handed neutrinos and scalar triplet, involved in the type I and II seesaw mechanisms, to be integrated out at their corresponding mass scales, leading to a correct renormalization group running. The result is that, of the 14 models considered, only two are able to fit the known data well. Both these two models correspond to ℤ2 symmetries. In addition to being able to fit the fermion masses and mixing parameters, they provide predictions for the sum of light neutrino masses and the effective neutrinoless double beta decay mass parameter, which are both within current observational bounds.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 197
Author(s):  
Igor P. Ivanov ◽  
Semyon A. Obodenko

CP4 3HDM is a unique three-Higgs-doublet model equipped with a higher-order CP-symmetry in the scalar and Yukawa sector. Based on a single assumption (the minimal model with a CP-symmetry of order 4 and no accidental symmetry), it leads to a remarkable correlation between its scalar and Yukawa sectors, which echoes in its phenomenology. A recent scan of the parameter space of CP4 3HDM under the assumption of scalar alignment identified a few dozens of points which passed many flavor constraints. In the present work, however, we show that almost all of these points are now ruled out by the recent LHC searches of t→H+b with subsequent hadronic decays of H+. Apart from a few points with charged Higgses heavier than the top quark, only one point survives all the checks, the model with an exotic, non-2HDM-like generation pattern of H+ couplings with quarks. One can expect many more points with exotic H+ couplings to quarks if the scalar alignment assumption is relaxed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Quentin Bonnefoy ◽  
Emanuele Gendy ◽  
Christophe Grojean

Abstract From general analyticity and unitarity requirements on the UV theory, positivity bounds on the Wilson coefficients of the dimension-8 operators composed of 4 fermions and two derivatives appearing in the Standard Model Effective Field Theory have been derived recently. We explore the fate of these bounds in the context of models endowed with a Minimal Flavor Violation (MFV) structure, models in which the flavor structure of higher dimensional operators is inherited from the one already contained in the Yukawa sector of the Standard Model Lagrangian. Our goal is to check whether the general positivity bounds translate onto bounds on the Yukawa coefficients and/or on elements of the CKM matrix. MFV fixes the coefficients of dimension-8 operators up to some multiplicative flavor-blind factors and we find that, in the most generic setup, the freedom left by those unspecified coefficients is enough as not to constrain the parameters of the renormalizable Yukawa sector. On the contrary, the latter shape the allowed region for the former. Requiring said overall coefficients to take natural $$ \mathcal{O}(1) $$ O 1 values could give rise to bounds on the Yukawa couplings. Remarkably, at leading order in an expansion in powers of the Yukawa matrices, no bounds on the CKM entries can be retrieved.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Csaba Csáki ◽  
Cong-Sen Guan ◽  
Teng Ma ◽  
Jing Shu

Abstract We present a novel mechanism for realistic electroweak symmetry breaking in Twin Higgs/neutral naturalness models where the Z2 exchange symmetry can remain exactly unbroken. The exchange symmetry in the Yukawa sector will be implemented as an “N-trigonometric parity” $$ \sin N\frac{h}{f}\leftrightarrow \cos N\frac{h}{f} $$ sin N h f ↔ cos N h f . The Yukawa couplings will be suppressed leading to an N-suppressed Higgs quadratic term, without significantly affecting the quartic. We present a concrete implementation of this idea for general (odd) values of N using maximal symmetry, and a realistic benchmark model for N = 3. We find that the tuning in the resulting Higgs potential is negligible, and also show that two-loop N-suppression violating gauge contributions can be sufficiently small. The Higgs potential and its couplings in top sector are different from other neutral naturalness models, which are the main predictions of our model and can be tested in colliders.


2020 ◽  
Vol 234 ◽  
pp. 01017
Author(s):  
Kei Yamamoto

We analyzed how to test flavor and helicity structures of the corresponding amplitudes in view of future data, motivated by the recent hints of lepton flavor universality violation observed in semileptonic B decays. The general assumption that non-standard effects are controlled by a U(2)5 flavor symmetry, minimally broken as in the Standard Model Yukawa sector, leads to stringent predictions on leptonic and semileptonic B decays. Future measurements will allow to prove or falsify this general hypothesis independently of its dynamical origin.


2018 ◽  
Vol 2018 (10) ◽  
Author(s):  
K. S. Babu ◽  
Borut Bajc ◽  
Shaikh Saad
Keyword(s):  

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
P.M. Ferreira ◽  
Igor P. Ivanov ◽  
Enrique Jiménez ◽  
Roman Pasechnik ◽  
Hugo Serôdio
Keyword(s):  

2017 ◽  
Vol 2017 (2) ◽  
Author(s):  
K. S. Babu ◽  
Borut Bajc ◽  
Shaikh Saad
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document