scholarly journals Constraints on general neutrino interactions with exotic fermion from neutrino-electron scattering experiments

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Zikang Chen ◽  
Tong Li ◽  
Jiajun Liao

Abstract The couplings between the neutrinos and exotic fermion can be probed in both neutrino scattering experiments and dark matter direct detection experiments. We present a detailed analysis of the general neutrino interactions with an exotic fermion and electrons at neutrino-electron scattering experiments. We obtain the constraints on the coupling coefficients of the scalar, pseudoscalar, vector, axialvector, tensor and electromagnetic dipole interactions from the CHARM-II, TEXONO and Borexino experiments. For the flavor-universal interactions, we find that the Borexino experiment sets the strongest bounds in the low mass region for the electromagnetic dipole interactions, and the CHARM-II experiment dominates the bounds for other scenarios. If the interactions are flavor dependent, the bounds from the CHARM-II or TEXONO experiment can be avoided, and there are correlations between the flavored coupling coefficients for the Borexino experiment. We also discuss the detection of sub-MeV DM absorbed by bound electron targets and illustrate that the vector coefficients preferred by XENON1T data are allowed by the neutrino-electron scattering experiments.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Catarina Cosme ◽  
Maíra Dutra ◽  
Stephen Godfrey ◽  
Taylor Gray

Abstract The freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter in the early universe is an appealing alternative to the well-known — and constrained — Weakly Interacting Massive Particle (WIMP) paradigm. Although challenging, the phenomenology of FIMP dark matter has been receiving growing attention and is possible in a few scenarios. In this work, we contribute to this endeavor by considering a Z′ portal to fermionic dark matter, with the Z′ having both vector and axial couplings and a mass ranging from MeV up to PeV. We evaluate the bounds on both freeze-in and freeze-out from direct detection, atomic parity violation, leptonic anomalous magnetic moments, neutrino-electron scattering, collider, and beam dump experiments. We show that FIMPs can already be tested by most of these experiments in a complementary way, whereas WIMPs are especially viable in the Z′ low mass regime, in addition to the Z′ resonance region. We also discuss the role of the axial couplings of Z′ in our results. We therefore hope to motivate specific realizations of this model in the context of FIMPs, as well as searches for these elusive dark matter candidates.


2019 ◽  
Vol 34 (13n14) ◽  
pp. 1940011 ◽  
Author(s):  
Mikael Chala ◽  
Ramona Gröber ◽  
Michael Spannowsky

We review the interplay between collider searches for vector-like quarks and dark matter direct detection experiments in composite Higgs models. With focus on a future 100 TeV collider, we also extend previous analyses to improve the reach for heavy quarks in the low mass region.


2019 ◽  
Vol 199 (1-2) ◽  
pp. 510-518 ◽  
Author(s):  
E. Bertoldo ◽  
◽  
A. H. Abdelhameed ◽  
G. Angloher ◽  
P. Bauer ◽  
...  

AbstractIn the current direct dark matter search landscape, the leading experiments in the sub-GeV mass region mostly rely on cryogenic techniques which employ crystalline targets. One attractive type of crystals for these experiments is those containing lithium, due to the fact that $$^7\hbox {Li}$$7Li is an ideal candidate to study spin-dependent dark matter interactions in the low mass region. Furthermore, $$^6\hbox {Li}$$6Li can absorb neutrons, a challenging background for dark matter experiments, through a distinctive signature which allows the monitoring of the neutron flux directly on site. In this work, we show the results obtained with three different detectors based on $$\hbox {LiAlO}_2$$LiAlO2, a target crystal never used before in cryogenic experiments.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
James Bateman ◽  
Ian McHardy ◽  
Alexander Merle ◽  
Tim R. Morris ◽  
Hendrik Ulbricht

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Marco Aurelio Díaz ◽  
Benjamin Koch ◽  
Sebastián Urrutia-Quiroga

We study the Inert Higgs Doublet Model and its inert scalar HiggsHas the only source for dark matter. It is found that three mass regions of the inert scalar Higgs can give the correct dark matter relic density. The low mass region (between 3 and 50 GeV) is ruled out. New direct dark matter detection experiments will probe the intermediate (between 60 and 100 GeV) and high (heavier than 550 GeV) mass regions. Collider experiments are advised to search forD±→HW±decay in the two jets plus missing energy channel.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 81
Author(s):  
Susana Cebrián

In the direct detection of the galactic dark matter, experiments using cryogenic solid-state detectors or noble liquids play for years a very relevant role, with increasing target mass and more and more complex detection systems. But smaller projects, based on very sensitive, advanced detectors following new technologies, could help in the exploration of the different proposed dark matter scenarios too. There are experiments focused on the observation of distinctive signatures of dark matter, like an annual modulation of the interaction rates or the directionality of the signal; other ones are intended to specifically investigate low mass dark matter candidates or particular interactions. For this kind of dark matter experiments at small scale, the physics case will be discussed and selected projects will be described, summarizing the basics of their detection methods and presenting their present status, recent results and prospects.


2017 ◽  
Vol 2017 (4) ◽  
Author(s):  
Enrico Bertuzzo ◽  
Frank F. Deppisch ◽  
Suchita Kulkarni ◽  
Yuber F. Perez Gonzalez ◽  
Renata Zukanovich Funchal

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Itay M. Bloch ◽  
Andrea Caputo ◽  
Rouven Essig ◽  
Diego Redigolo ◽  
Mukul Sholapurkar ◽  
...  

Abstract Motivated by the recent XENON1T results, we explore various new physics models that can be discovered through searches for electron recoils in $$ \mathcal{O} $$ O (keV)-threshold direct-detection experiments. First, we consider the absorption of axion-like particles, dark photons, and scalars, either as dark matter relics or being produced directly in the Sun. In the latter case, we find that keV mass bosons produced in the Sun provide an adequate fit to the data but are excluded by stellar cooling constraints. We address this tension by introducing a novel Chameleon-like axion model, which can explain the excess while evading the stellar bounds. We find that absorption of bosonic dark matter provides a viable explanation for the excess only if the dark matter is a dark photon or an axion. In the latter case, photophobic axion couplings are necessary to avoid X-ray constraints. Second, we analyze models of dark matter-electron scattering to determine which models might explain the excess. Standard scattering of dark matter with electrons is generically in conflict with data from lower-threshold experiments. Momentum-dependent interactions with a heavy mediator can fit the data with dark matter mass heavier than a GeV but are generically in tension with collider constraints. Next, we consider dark matter consisting of two (or more) states that have a small mass splitting. The exothermic (down)scattering of the heavier state to the lighter state can fit the data for keV mass splittings. Finally, we consider a subcomponent of dark matter that is accelerated by scattering off cosmic rays, finding that dark matter interacting though an $$ \mathcal{O} $$ O (100 keV)-mass mediator can fit the data. The cross sections required in this scenario are, however, typically challenged by complementary probes of the light mediator. Throughout our study, we implement an unbinned Monte Carlo analysis and use an improved energy reconstruction of the XENON1T events.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Waqas Ahmed ◽  
Shabbar Raza ◽  
Qaisar Shafi ◽  
Cem Salih Un ◽  
Bin Zhu

Abstract We consider a class of SUSY models in which the MSSM gauge group is supplemented with a gauged U(1)B−L symmetry and a global U(1)R symmetry. This extension introduces only electrically neutral states, and the new SUSY partners effectively double the number of states in the neutralino sector that now includes a blino (from B − L) and singlino from a gauge singlet superfield. If the DM density is saturated by a LSP neutralino, the model yields quite a rich phenomenology depending on the DM composition. The LSP relic density constraint provides a lower bound on the stop and gluino masses of about 3 TeV and 4 TeV respectively, which is testable in the near future collider experiments such as HL-LHC. The chargino mass lies between 0.24 TeV and about 2.0 TeV, which can be tested based on the allowed decay channels. We also find $$ {m}_{\tilde{\tau}1}\gtrsim $$ m τ ˜ 1 ≳ 500 GeV, and $$ {m}_{\tilde{e}},{m}_{\tilde{\mu}},{m}_{{\tilde{v}}^{S,P}}\gtrsim $$ m e ˜ , m μ ˜ , m v ˜ S , P ≳ 1 TeV. We identify chargino-neutralino coannihilation processes in the mass region 0.24 TeV $$ \lesssim {m}_{{\tilde{\upchi}}_1^0}\approx {m}_{{\tilde{\upchi}}_1^{\pm }}\lesssim $$ ≲ m χ ˜ 1 0 ≈ m χ ˜ 1 ± ≲ 1.5 TeV, and also coannihilation processes involving stau, selectron, smuon and sneutrinos for masses around 1 TeV. In addition, A2 resonance solutions are found around 1 TeV, and H2 and H3 resonance solutions are also shown around 0.5 TeV and 1 TeV . Some of the A2 resonance solutions with tan β ≳ 20 may be tested by the A/H → τ+τ− LHC searches.. While the relic density constraint excludes the bino-like DM, it is still possible to realize higgsino, singlino and blino-like DM for various mass scales. We show that all these solutions will be tested in future direct detection experiments such as LUX-Zeplin and Xenon-nT.


Sign in / Sign up

Export Citation Format

Share Document