scholarly journals Relativistic freeze-in with scalar dark matter in a gauged B − L model and electroweak symmetry breaking

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Priyotosh Bandyopadhyay ◽  
Manimala Mitra ◽  
Abhishek Roy

Abstract We explore relativistic freeze-in production of scalar dark matter in gauged B − L model, where we focus on the production of dark matter from the decay and annihilation of Standard Model (SM) and B − L Higgs bosons. We consider the Bose-Einstein (BE) and Fermi-Dirac (FD) statistics, along with the thermal mass correction of the SM Higgs boson in our analysis. We show that in addition to the SM Higgs boson, the annihilation and decay of the B − L scalar can also contribute substantially to the dark matter relic density. Potential effects of electroweak symmetry breaking (EWSB) and thermal mass correction in BE framework enhance the dark matter relic substantially as it freezes-in near EWSB temperature via scalar annihilation. However, such effects are not so prominent when the dark matter freezes-in at a later epoch than EWSB, dominantly by decay of scalars. The results of this analysis are rather generic, and applicable to other similar scenarios.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Kamila Kowalska ◽  
Enrico Maria Sessolo

We give a brief review of the current constraints and prospects for detection of higgsino dark matter in low-scale supersymmetry. In the first part we argue, after performing a survey of all potential dark matter particles in the MSSM, that the (nearly) pure higgsino is the only candidate emerging virtually unscathed from the wealth of observational data of recent years. In doing so by virtue of its gauge quantum numbers and electroweak symmetry breaking only, it maintains at the same time a relatively high degree of model-independence. In the second part we properly review the prospects for detection of a higgsino-like neutralino in direct underground dark matter searches, collider searches, and indirect astrophysical signals. We provide estimates for the typical scale of the superpartners and fine tuning in the context of traditional scenarios where the breaking of supersymmetry is mediated at about the scale of Grand Unification and where strong expectations for a timely detection of higgsinos in underground detectors are closely related to the measured 125 GeV mass of the Higgs boson at the LHC.


2008 ◽  
Vol 23 (32) ◽  
pp. 5093-5115 ◽  
Author(s):  
KARL JAKOBS ◽  
MARKUS SCHUMACHER

The investigation of the dynamics responsible for electroweak symmetry breaking is one of the prime tasks of experiments at the CERN Large Hadron Collider (LHC). The experiments ATLAS and CMS have been designed to be able to discover a Standard Model Higgs boson over the full mass range as well as Higgs bosons in extended models. In this paper, the prospects for Higgs boson searches at the LHC are reviewed. In addition, the potential for the measurement of Higgs boson parameters is discussed.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.


2010 ◽  
Vol 25 (06) ◽  
pp. 423-429 ◽  
Author(s):  
ALFONSO R. ZERWEKH

In this paper, we propose an effective model scheme that describes the electroweak symmetry breaking sector by means of composite Higgs-like scalars, following the ideas of Minimal Walking Technicolor (MWT). We argue that, because of the general failure of Extended Technicolor (ETC) to explain the mass of the top quark, it is necessary to introduce two composite Higgs bosons: one of them originated by a MWT–ETC sector and the other produced by a Topcolor sector. We focus on the phenomenological differences between the light composite Higgs present in our model and the fundamental Higgs boson predicted by the Standard Model and their production at the LHC. We show that in this scheme the main production channel of the lighter Higgs boson is the associated production with a gauge boson and WW fusion but not the gluon–gluon fusion channel which is substantially suppressed.


1996 ◽  
Vol 11 (29) ◽  
pp. 5221-5243 ◽  
Author(s):  
ANIRBAN KUNDU ◽  
BISWARUP MUKHOPADHYAYA

We have investigated some phenomenological aspects of an SU (2) × U (1) scenario where scalars belonging to arbitrary representations of SU(2) are involved in electroweak symmetry breaking. The resulting interaction terms are derived. Some constraints are obtained on the arbitrary scalar sector from the requirement of tree-level unitarity in longitudinal gauge boson scattering. We also show that there is a remarkable complimentarity between the constraints on a general structure from the ρ parameter and those from precision measurement of the [Formula: see text] vertex. Finally, some salient features about the production of such Higgs bosons in e+e− collision are discussed.


1996 ◽  
Vol 54 (9) ◽  
pp. 5855-5865 ◽  
Author(s):  
Marco A. Díaz ◽  
Tonnis A. ter Veldhuis ◽  
Thomas J. Weiler

2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Emidio Gabrielli ◽  
Matti Heikinheimo ◽  
Kristjan Kannike ◽  
Antonio Racioppi ◽  
Martti Raidal ◽  
...  

2009 ◽  
Vol 24 (21) ◽  
pp. 1631-1648 ◽  
Author(s):  
RADOVAN DERMÍŠEK

This review provides an elementary discussion of electroweak symmetry breaking in the minimal and the next-to-minimal supersymmetric models with the focus on the fine-tuning problem — the tension between natural electroweak symmetry breaking and the direct search limit on the Higgs boson mass. Two generic solutions of the fine-tuning problem are discussed in detail: models with unusual Higgs decays; and models with unusual pattern of soft supersymmetry breaking parameters.


Sign in / Sign up

Export Citation Format

Share Document