mass correction
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
M. L. Pattersons ◽  
A. Sulaksono

AbstractDue to their compactness, neutron stars are the best study matter in high density and strong-field gravity. Hartle and Thorne have proposed a good approximation or perturbation procedure within general relativity for slowly rotating relativistic stars by assuming the matter inside the stars is an ideal isotropic fluid. This study extends the analytical Hartle–Thorne formalism for slowly rotating neutron stars, including the possibility that the neutron star pressure can be anisotropic. We study the impact of neutron stars’ anisotropy pressure on mass correction and deformation numerically. For the anisotropic model, we use the Bowers-Liang model. For the equation of state of neutron stars, we use a relativistic mean-field BSP parameter set with the hyperons, and for the crust equation of state, we use the one of Miyatsu et al. We have found that the mass of neutron stars increases but the radius decreases by increasing $$\lambda _{BL}$$ λ BL value. Therefore, the NS compactness increases when $$\lambda _{BL}$$ λ BL becomes larger. This fact leads to a condition in which NS is getting harder to deformed when the $$\lambda _{BL}$$ λ BL increased.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Wen Yin

Abstract The axion mass receives a large correction from small instantons if the QCD gets strongly coupled at high energies. We discuss the size of the new CP violating phases caused by the fact that the small instantons are sensitive to the UV physics. We also discuss the effects of the mass correction on the axion abundance of the Universe. Taking the small-instanton contributions into account, we propose a natural scenario of axion dark matter where the axion decay constant is as large as 1015-16 GeV. The scenario works in the high-scale inflation models.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Priyotosh Bandyopadhyay ◽  
Manimala Mitra ◽  
Abhishek Roy

Abstract We explore relativistic freeze-in production of scalar dark matter in gauged B − L model, where we focus on the production of dark matter from the decay and annihilation of Standard Model (SM) and B − L Higgs bosons. We consider the Bose-Einstein (BE) and Fermi-Dirac (FD) statistics, along with the thermal mass correction of the SM Higgs boson in our analysis. We show that in addition to the SM Higgs boson, the annihilation and decay of the B − L scalar can also contribute substantially to the dark matter relic density. Potential effects of electroweak symmetry breaking (EWSB) and thermal mass correction in BE framework enhance the dark matter relic substantially as it freezes-in near EWSB temperature via scalar annihilation. However, such effects are not so prominent when the dark matter freezes-in at a later epoch than EWSB, dominantly by decay of scalars. The results of this analysis are rather generic, and applicable to other similar scenarios.


Author(s):  
Hui Xie ◽  
Li Guang Jiao ◽  
Ai Liu ◽  
Y.K. Ho

The first-order relativistic corrections to the non-relativistic energies of hydrogen-like atom embedded in plasma screening environments are calculated in the framework of direct perturbation theory by using the generalized pseudospectral method. The standard Debye-Hückel potential, exponential cosine screened Coulomb potential, and Hulthén potential are employed to model different screening conditions and their effects on the eigenenergies of hydrogen-like atoms are investigated. The relativistic corrections which include the relativistic mass correction, Darwin term, and the spin-orbit coupling term for both the ground and excited states are reported as functions of screening parameters. Comparison with previous theoretical predictions shows that both the relativistic mass correction and spin-orbit coupling obtained in this work are in good agreement with previous estimations, while significant discrepancy and even opposite trend is found for the Darwin term. The overall relativistic-corrected system energies predicted in this work, however, are in good agreement with the fully relativistic calculations available in the literature. We finally present the scaling law of the first-order relativistic corrections and discuss the validity of the direct perturbation theory with respect to both the nuclear charge and the screening parameter.


2021 ◽  
Vol 1005 ◽  
pp. 121976
Author(s):  
Ziyue Wang ◽  
Xingyu Guo ◽  
Shuzhe Shi ◽  
Pengfei Zhuang

Author(s):  
D. A. Shohonov ◽  
R. G. Shulyakovsky

We considered the two-dimensional theoretical field model of interaction of scalar and fermion fields with the Higgs potential. Contribution of instanton effects to total fermion propagator is calculated. Mass correction to the propagator in the presence of an instanton field is determined. The obtained results can be interpreted as confinement.


Sign in / Sign up

Export Citation Format

Share Document