scholarly journals Probing small-scale power spectra with pulsar timing arrays

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vincent S. H. Lee ◽  
Andrea Mitridate ◽  
Tanner Trickle ◽  
Kathryn M. Zurek

Abstract Models of Dark Matter (DM) can leave unique imprints on the Universe’s small scale structure by boosting density perturbations on small scales. We study the capability of Pulsar Timing Arrays to search for, and constrain, subhalos from such models. The models of DM we consider are ordinary adiabatic perturbations in ΛCDM, QCD axion miniclusters, models with early matter domination, and vector DM produced during inflation. We show that ΛCDM, largely due to tidal stripping effects in the Milky Way, is out of reach for PTAs. Axion miniclusters may be within reach, although this depends crucially on whether the axion relic density is dominated by the misalignment or string contribution. Models where there is matter domination with a reheat temperature below 1 GeV may be observed with future PTAs. Lastly, vector DM produced during inflation can be detected if it is lighter than 10−16 GeV. We also make publicly available a Python Monte Carlo tool for generating the PTA time delay signal from any model of DM substructure.

2019 ◽  
Vol 485 (2) ◽  
pp. 2861-2876 ◽  
Author(s):  
Benjamin V Church ◽  
Philip Mocz ◽  
Jeremiah P Ostriker

ABSTRACT Although highly successful on cosmological scales, cold dark matter (CDM) models predict unobserved overdense ‘cusps’ in dwarf galaxies and overestimate their formation rate. We consider an ultralight axion-like scalar boson which promises to reduce these observational discrepancies at galactic scales. The model, known as fuzzy dark matter (FDM), avoids cusps, suppresses small-scale power, and delays galaxy formation via macroscopic quantum pressure. We compare the substructure and density fluctuations of galactic dark matter haloes comprised of ultralight axions to conventional CDM results. Besides self-gravitating subhaloes, FDM includes non-virialized overdense wavelets formed by quantum interference patterns, which are an efficient source of heating to galactic discs. We find that, in the solar neighbourhood, wavelet heating is sufficient to give the oldest disc stars a velocity dispersion of ${\sim } {30}{\, \mathrm{km\, s}^{-1}}$ within a Hubble time if energy is not lost from the disc, the velocity dispersion increasing with stellar age as σD ∝ t0.4 in agreement with observations. Furthermore, we calculate the radius-dependent velocity dispersion and corresponding scaleheight caused by the heating of this dynamical substructure in both CDM and FDM with the determination that these effects will produce a flaring that terminates the Milky Way disc at $15\!-\!20{\, \mathrm{kpc}}$. Although the source of thickened discs is not known, the heating due to perturbations caused by dark substructure cannot exceed the total disc velocity dispersion. Therefore, this work provides a lower bound on the FDM particle mass of ma > 0.6 × 10−22 eV. Furthermore, FDM wavelets with this particle mass should be considered a viable mechanism for producing the observed disc thickening with time.


2020 ◽  
Vol 497 (3) ◽  
pp. 2941-2953 ◽  
Author(s):  
Anchal Saxena ◽  
Suman Majumdar ◽  
Mohd Kamran ◽  
Matteo Viel

ABSTRACT The nature of dark matter sets the timeline for the formation of first collapsed haloes and thus affects the sources of reionization. Here, we consider two different models of dark matter: cold dark matter (CDM) and thermal warm dark matter (WDM), and study how they impact the epoch of reionization (EoR) and its 21-cm observables. Using a suite of simulations, we find that in WDM scenarios, the structure formation on small scales gets suppressed, resulting in a smaller number of low-mass dark matter haloes compared to the CDM scenario. Assuming that the efficiency of sources in producing ionizing photons remains the same, this leads to a lower number of total ionizing photons produced at any given cosmic time, thus causing a delay in the reionization process. We also find visual differences in the neutral hydrogen (H i) topology and in 21-cm maps in case of the WDM compared to the CDM. However, differences in the 21-cm power spectra, at the same neutral fraction, are found to be small. Thus, we focus on the non-Gaussianity in the EoR 21-cm signal, quantified through its bispectrum. We find that the 21-cm bispectra (driven by the H i topology) are significantly different in WDM models compared to the CDM, even for the same mass-averaged neutral fractions. This establishes that the 21-cm bispectrum is a unique and promising way to differentiate between dark matter models, and can be used to constrain the nature of the dark matter in the future EoR observations.


2019 ◽  
Vol 486 (4) ◽  
pp. 4545-4568 ◽  
Author(s):  
Catherine E Fielder ◽  
Yao-Yuan Mao ◽  
Jeffrey A Newman ◽  
Andrew R Zentner ◽  
Timothy C Licquia

ABSTRACT On small scales there have been a number of claims of discrepancies between the standard cold dark matter (CDM) model and observations. The ‘missing satellites problem’ infamously describes the overabundance of subhaloes from CDM simulations compared to the number of satellites observed in the Milky Way. A variety of solutions to this discrepancy have been proposed; however, the impact of the specific properties of the Milky Way halo relative to the typical halo of its mass has yet to be explored. Motivated by recent studies that identified ways in which the Milky Way is atypical, we investigate how the properties of dark matter haloes with mass comparable to our Galaxy’s – including concentration, spin, shape, and scale factor of the last major merger – correlate with the subhalo abundance. Using zoom-in simulations of Milky Way-like haloes, we build two models of subhalo abundance as functions of host halo properties. From these models we conclude that the Milky Way most likely has fewer subhaloes than the average halo of the same mass. We expect up to 30 per cent fewer subhaloes with low maximum rotation velocities ($V_{\rm max}^{\rm sat} \sim 10$ km s−1) at the 68 per cent confidence level and up to 52 per cent fewer than average subhaloes with high rotation velocities ($V_{\rm max}^{\rm sat} \gtrsim 30$ km s−1, comparable to the Magellanic Clouds) than would be expected for a typical halo of the Milky Way’s mass. Concentration is the most informative single parameter for predicting subhalo abundance. Our results imply that models tuned to explain the missing satellites problem assuming typical subhalo abundances for our Galaxy may be overcorrecting.


2022 ◽  
Vol 2022 (01) ◽  
pp. 020
Author(s):  
Cristiano G. Sabiu ◽  
Kenji Kadota ◽  
Jacobo Asorey ◽  
Inkyu Park

Abstract We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21 cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on the reionization history due to the suppression of small scale density perturbations in the early universe. This behavior depends strongly on the mass of the axion particle. Using numerical simulations of the brightness temperature field of neutral hydrogen over a large redshift range, we construct a suite of training data. This data is used to train a convolutional neural network that can build a connection between the spatial structures of the brightness temperature field and the input axion mass directly. We construct mock observations of the future Square Kilometer Array survey, SKA1-Low, and find that even in the presence of realistic noise and resolution constraints, the network is still able to predict the input axion mass. We find that the axion mass can be recovered over a wide mass range with a precision of approximately 20%, and as the whole DM contribution, the axion can be detected using SKA1-Low at 68% if the axion mass is M X < 1.86 × 10-20 eV although this can decrease to M X < 5.25 × 10-21 eV if we relax our assumptions on the astrophysical modeling by treating those astrophysical parameters as nuisance parameters.


2019 ◽  
Vol 492 (1) ◽  
pp. 1214-1242 ◽  
Author(s):  
Oliver H E Philcox ◽  
Daniel J Eisenstein

ABSTRACT We present a new class of estimators for computing small-scale power spectra and bispectra in configuration space via weighted pair and triple counts, with no explicit use of Fourier transforms. Particle counts are truncated at $R_0\sim 100\, h^{-1}\, \mathrm{Mpc}$ via a continuous window function, which has negligible effect on the measured power spectrum multipoles at small scales. This gives a power spectrum algorithm with complexity $\mathcal {O}(NnR_0^3)$ (or $\mathcal {O}(Nn^2R_0^6)$ for the bispectrum), measuring N galaxies with number density n. Our estimators are corrected for the survey geometry and have neither self-count contributions nor discretization artefacts, making them ideal for high-k analysis. Unlike conventional Fourier-transform-based approaches, our algorithm becomes more efficient on small scales (since a smaller R0 may be used), thus we may efficiently estimate spectra across k-space by coupling this method with standard techniques. We demonstrate the utility of the publicly available power spectrum algorithm by applying it to BOSS DR12 simulations to compute the high-k power spectrum and its covariance. In addition, we derive a theoretical rescaled-Gaussian covariance matrix, which incorporates the survey geometry and is found to be in good agreement with that from mocks. Computing configuration- and Fourier-space statistics in the same manner allows us to consider joint analyses, which can place stronger bounds on cosmological parameters; to this end we also discuss the cross-covariance between the two-point correlation function and the small-scale power spectrum.


2017 ◽  
Vol 26 (07) ◽  
pp. 1750069 ◽  
Author(s):  
P. D. Morley ◽  
D. J. Buettner

We describe the neutrino flavor ([Formula: see text], [Formula: see text], [Formula: see text]) masses as [Formula: see text] [Formula: see text] with [Formula: see text] and probably [Formula: see text]. The quantity [Formula: see text] is the degenerate neutrino mass. Because neutrino flavor is not a quantum number, this degenerate mass appears in the neutrino equation-of-state [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2014), doi:10.1142/s0218271815500042.]. We apply a Monte Carlo computational physics technique to the Local Group (LG) of galaxies to determine an approximate location for a Dark Matter embedding Condensed Neutrino Object (CNO) [P. D. Morley and D. J. Buettner, Int. J. Mod. Phys. D (2016), doi:10.1142/s0218271816500899.]. The calculation is based on the rotational properties of the only spiral galaxies within the LG: M31, M33 and the Milky Way. CNOs could be the Dark Matter everyone is looking for and we estimate the CNO embedding the LG to have a mass 5.17[Formula: see text] M[Formula: see text] and a radius 1.316 Mpc, with the estimated value of [Formula: see text] eV[Formula: see text]/c2. The up-coming KATRIN experiment [https://www.katrin.kit.edu.] will either be the definitive result or eliminate condensed neutrinos as a Dark Matter candidate.


1999 ◽  
Vol 183 ◽  
pp. 273-273
Author(s):  
K. Yamamoto ◽  
N. Sugiyama ◽  
H. Sato

We carefully re-examine the evolution of small scale cosmological perturbations, motivated from the studies of cosmic structure formation in the high-z universe. Under the assumption of the hierarchical clustering scenario, the evolution of density fluctuations on very small scales is especially important for the early formation of the bound objects such as population III stars or primordial sub-galaxies.


Author(s):  
Hamish Silverwood ◽  
Richard Easther

AbstractTypical stars in the Milky Way galaxy have velocities of hundreds of kilometres per second and experience gravitational accelerations of $\sim\!10^{-10}~{\rm m\,s}^{-2}$, resulting in velocity changes of a few centimetres per second over a decade. Measurements of these accelerations would permit direct tests of the applicability of Newtonian dynamics on kiloparsec length scales and could reveal significant small-scale inhomogeneities within the galaxy, as well increasing the sensitivity of measurements of the overall mass distribution of the galaxy. Noting that a reasonable extrapolation of progress in exoplanet hunting spectrographs suggests that centimetre per second level precision will be attainable in the coming decade(s), we explore the possibilities such measurements would create. We consider possible confounding effects, including apparent accelerations induced by stellar motion and reflex velocities from planetary systems, along with possible strategies for their mitigation. If these issues can be satisfactorily addressed, it will be possible to use high-precision measurements of changing stellar velocities to perform a ‘blind search’ for dark matter, make direct tests of theories of non-Newtonian gravitational dynamics, detect local inhomogeneities in the dark matter density, and greatly improve measurements of the overall properties of the galaxy.


2020 ◽  
Vol 496 (3) ◽  
pp. 3448-3468
Author(s):  
Ivan Debono ◽  
Dhiraj Kumar Hazra ◽  
Arman Shafieloo ◽  
George F Smoot ◽  
Alexei A Starobinsky

ABSTRACT With Planck cosmic microwave background observations, we established the spectral amplitude and tilt of the primordial power spectrum. Evidence of a red spectral tilt (ns = 0.96) at 8σ provides strong support for the inflationary mechanism, especially the slow roll of the effective scalar field in its nearly flat potential as the generator of scalar primordial perturbations. With the next generation of large-scale structure surveys, we expect to probe primordial physics beyond the overall shape and amplitude of the main, smooth, and slowly changing part of the inflaton potential. Using the specifications for the upcoming Euclid survey, we investigate to what extent we can constrain the inflation potential beyond its established slow-roll behaviour. We provide robust forecasts with Euclid and Planck mock data from nine fiducial power spectra that contain suppression and wiggles at different cosmological scales, using the Wiggly Whipped Inflation (WWI) framework to generate these features in the primordial spectrum. We include both Euclid cosmic shear and galaxy clustering, with a conservative cut-off for non-linear scales. Using Markov chain Monte Carlo simulations, we obtain an improvement in constraints in the WWI potential, as well an improvement for the background cosmology parameters. We find that apart from improving the constraints on the overall scale of the inflationary potential by 40–50 per cent, we can also identify oscillations in the primordial spectrum that are present within intermediate to small scales ($k\sim 0.01\!-\!0.2\, \mathrm{Mpc^{-1}}$).


Sign in / Sign up

Export Citation Format

Share Document