stellar motion
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Nuno C. Santos ◽  
Susana C.C. Barros ◽  
Olivier D.S. Demangeon ◽  
João P. Faria

Is the Solar System unique, or are planets ubiquitous in the universe? The answer to this long-standing question implies the understanding of planet formation, but perhaps more relevant, the observational assessment of the existence of other worlds and their frequency in the galaxy. The detection of planets orbiting other suns has always been a challenging task. Fortunately, technological progress together with significant development in data reduction and analysis processes allowed astronomers to finally succeed. The methods used so far are mostly based on indirect approaches, able to detect the influence of the planets on the stellar motion (dynamical methods) or the planet’s shadow as it crosses the stellar disk (transit method). For a growing number of favorable cases, direct imaging has also been successful. The combination of different methods also allowed probing planet interiors, composition, temperature, atmospheres, and orbital architecture. Overall, one can confidently state that planets are common around solar-type stars, low mass planets being the most frequent among them. Despite all the progress, the discovery and characterization of temperate Earth-like worlds, similar to the Earth in both mass and composition and thus potential islands of life in the universe, is still a challenging task. Their low amplitude signals are difficult to detect and are often submerged by the noise produced by different instrumentation sources and astrophysical processes. However, the dawn of a new generation of ground and space-based instruments and missions is promising a new era in this domain.



2020 ◽  
Vol 897 (1) ◽  
pp. 65 ◽  
Author(s):  
Shugo Michikoshi ◽  
Eiichiro Kokubo


2020 ◽  
Vol 634 ◽  
pp. A67
Author(s):  
L. R. Baalmann ◽  
K. Scherer ◽  
H. Fichtner ◽  
J. Kleimann ◽  
D. J. Bomans ◽  
...  

Context. Three-dimensional models of astrospheres have recently become of interest. However, comparisons between these models and observations are non-trivial because of the two-dimensional nature of observations. Aims. By projecting selected physical values of three-dimensional models of astrospheres onto the surface of a sphere that is centred on a virtual all-sky observer, these models can be compared to observational data in different observables: the column density, bremsstrahlung flux, rotation measure, Hα flux, and synchrotron or cyclotron flux. Methods. Projections were calculated by rotating and moving the astrosphere model to the desired position and orientation and by then computing the value of a given patch on the sphere by a modified line-of-sight integration. Contributions to the selected observable made by all model cells that are connected to the patch by the line of sight in question were taken into account. Results. When the model produces a bow shock, a distinct parabolic structure produced by the outer astrosheath can be seen in every observable of the projection, the exact shape depending on the orientations of the line of sight and the stellar motion. Of all four examined astrosphere models, only that of λ Cephei shows fluxes that are higher than current observational thresholds. This is due to the strong stellar wind and interstellar inflow of the λ Cephei model.



2019 ◽  
Vol 631 ◽  
pp. A170 ◽  
Author(s):  
A. Rodríguez-González ◽  
Z. Meliani ◽  
M. Sánchez-Cruces ◽  
P. R. Rivera-Ortiz ◽  
A. Castellanos-Ramírez

Context. The interstellar bubble RCW 120 seen around a type O runaway star is driven by the stellar wind and the ionising radiation emitted by the star. The boundary between the stellar wind and interstellar medium (ISM) is associated with the arc-shaped mid-infrared dust emission around the star within the HII region. Aims. We aim to investigate the arc-shaped bow shock in RCW 120 by means of numerical simulations, including the radiation, dust, HII region, and wind bubble. Methods. We performed 3D radiation-hydrodynamic simulations including dust using the GUACHO code. Our model includes a detailed treatment of dust grains in the ISM and takes into account the drag forces between dust and gas and the effect of radiation pressure on the gas and dust. The dust is treated as a pressureless gas component. The simulation uses typical properties of RCW 120. We analyse five simulations to deduce the effect of the ionising radiation and dust on both the emission intensity and the shape of the shock. Results. The interaction of the wind and the ionising radiation from a runaway star with the ISM forms an arc-shaped bow shock where the dust from the ISM accumulates in front of the moving star. Moreover, the dust forms a second small arc-shaped structure within the rarefied region at the back of the star inside the bubble. In order to obtain the decoupling between the gas and the dust, it is necessary to include the radiation-hydrodynamic equations together with the dust and the stellar motion. In this work all these elements are considered together, and we show that the decoupling between gas and dust obtained in the simulation is in agreement with the morphology of the infrared observations of RCW 120.



2019 ◽  
Vol 55 (2) ◽  
pp. 211-219 ◽  
Author(s):  
J. Reyes-Iturbide ◽  
Pablo F. Velázquez ◽  
M. Rosado ◽  
E. Matías Schneiter ◽  
I. Ramírez-Ballinas

We present 3D hydrodynamical simulations of the circumstellar bubble from a Wolf-Rayet runaway star. In the models two properties were taken into account: (a) the proper motion of the central star through the interstellar medium (ISM) and (b) the evolution of the stellar wind from the red supergiant (RSG) stage to the Wolf-Rayet (WR) stage. From the hydrodynamic results synthetic X-ray maps in the [0.3 − 1.2] keV energy range were computed. These maps show that the bubble morphology is affected by the stellar motion, producing a bow shock in the RSG stage that can explain the limb-brightened morphology observed. Additionally, these synthetic maps show filamentary and clumpy appearance produced by instabilities triggered from the interaction between the WR wind and the RSG shell. It was found that these types of collisions can explain the origin of the X-ray emission observed in the nebulae of Wolf- Rayet stars.



2019 ◽  
Vol 487 (4) ◽  
pp. 5416-5440 ◽  
Author(s):  
Sandro Tacchella ◽  
Benedikt Diemer ◽  
Lars Hernquist ◽  
Shy Genel ◽  
Federico Marinacci ◽  
...  

ABSTRACT Using the IllustrisTNG simulations, we investigate the connection between galaxy morphology and star formation in central galaxies with stellar masses in the range 109–1011.5 M⊙. We quantify galaxy morphology by a kinematical decomposition of the stellar component into a spheroidal and a disc component (spheroid-to-total ratio, S/T) and by the concentration of the stellar mass density profile (C82). S/T is correlated with stellar mass and star formation activity, while C82 correlates only with stellar mass. Overall, we find good agreement with observational estimates for both S/T and C82. Low- and high-mass galaxies are dominated by random stellar motion, while only intermediate-mass galaxies (M⋆ ≈ 1010–1010.5 M⊙) are dominated by ordered rotation. Whereas higher mass galaxies are typical spheroids with high concentrations, lower mass galaxies have low concentration, pointing to different formation channels. Although we find a correlation between S/T and star formation activity, in the TNG model galaxies do not necessarily change their morphology when they transition through the green valley or when they cease their star formation, this depending on galaxy stellar mass and morphological estimator. Instead, the morphology (S/T and C82) is generally set during the star-forming phase of galaxies. The apparent correlation between S/T and star formation arises because earlier forming galaxies had, on average, a higher S/T at a given stellar mass. Furthermore, we show that mergers drive in situ bulge formation in intermediate-mass galaxies and are responsible for the recent spheroidal mass assembly in the massive galaxies with M⋆ > 1011 M⊙. In particular, these massive galaxies assemble about half of the spheroidal mass while star-forming and the other half through mergers while quiescent.



Author(s):  
Hamish Silverwood ◽  
Richard Easther

AbstractTypical stars in the Milky Way galaxy have velocities of hundreds of kilometres per second and experience gravitational accelerations of $\sim\!10^{-10}~{\rm m\,s}^{-2}$, resulting in velocity changes of a few centimetres per second over a decade. Measurements of these accelerations would permit direct tests of the applicability of Newtonian dynamics on kiloparsec length scales and could reveal significant small-scale inhomogeneities within the galaxy, as well increasing the sensitivity of measurements of the overall mass distribution of the galaxy. Noting that a reasonable extrapolation of progress in exoplanet hunting spectrographs suggests that centimetre per second level precision will be attainable in the coming decade(s), we explore the possibilities such measurements would create. We consider possible confounding effects, including apparent accelerations induced by stellar motion and reflex velocities from planetary systems, along with possible strategies for their mitigation. If these issues can be satisfactorily addressed, it will be possible to use high-precision measurements of changing stellar velocities to perform a ‘blind search’ for dark matter, make direct tests of theories of non-Newtonian gravitational dynamics, detect local inhomogeneities in the dark matter density, and greatly improve measurements of the overall properties of the galaxy.



2018 ◽  
Vol 618 ◽  
pp. A7 ◽  
Author(s):  
Eduard I. Vorobyov ◽  
Vardan G. Elbakyan

Aims. Migration of dense gaseous clumps that form in young protostellar disks via gravitational fragmentation is investigated to determine the likelihood of giant planet formation. Methods. High-resolution numerical hydrodynamics simulations in the thin-disk limit are employed to compute the formation and long-term evolution of a gravitationally unstable protostellar disk around a solar-mass star. Results. We show that gaseous clumps that form in the outer regions of the disk (>100 au) through disk fragmentation are often perturbed by other clumps or disk structures, such as spiral arms, and migrate toward the central star on timescales from a few thousand to few tens of thousands of years. The migration timescale is slowest when stellar motion in response to the disk gravity is considered. When approaching the star, the clumps first gain mass (up to several tens of MJup), but then quickly lose most of their diffuse envelopes through tidal torques. Part of the clump envelope can be accreted onto the central star causing an FU-Orionis-type accretion and luminosity outburst. The tidal mass loss helps the clumps to significantly slow down or even halt their inward migration at a distance of a few tens of au from the protostar. The resulting clumps are heavily truncated both in mass and size compared to their wider orbit counterparts, keeping only a dense and hot nucleus. During the inward migration, the temperature in the clump interiors may exceed the molecular hydrogen dissociation limit (2000 K) and the central region of the clump can collapse into a gas giant protoplanet. Moreover, migrating clumps may experience close encounters with other clumps, resulting in the ejection of the least massive (planetary-mass) clumps from the disk. We argue that FU-Orionis-type luminosity outbursts may be the end product of disk fragmentation and clump inward migration, preceding the formation of giant protoplanets on tens of au orbits in systems such as HR 8799.



2018 ◽  
Vol 617 ◽  
pp. A13 ◽  
Author(s):  
S. del Palacio ◽  
V. Bosch-Ramon ◽  
A. L. Müller ◽  
G. E. Romero

Context. Runaway stars produce bowshocks that are usually observed at infrared (IR) wavelengths. Non-thermal radio emission has been detected so far only from the bowshock of BD+43°3654, whereas the detection of non-thermal radiation from these bowshocks at high energies remains elusive. Aims. We aim at characterising in detail the radio, X-ray, and γ-ray emission from stellar bowshocks accounting for the structure of the region of interaction between the stellar wind and its environment. Methods. We develop a broadband-radiative, multi-zone model for stellar bowshocks that takes into account the spatial structure of the emitting region and the observational constraints. The model predicts the evolution and the emission of the relativistic particles accelerated and streaming together with the shocked flow. Results. We present broadband non-thermal spectral energy distributions for different scenarios, synthetic radio-cm synchrotron maps that reproduce the morphology of BD+43°3654, and updated predictions in X-ray and γ-ray energy ranges. We also compare the results of the multi-zone model applied in this work with those of a refined one-zone model. Conclusions. A multi-zone model provides better constraints than a one-zone model on the relevant parameters, namely the magnetic field intensity and the amount of energy deposited in non-thermal particles. However, one-zone models can be improved by carefully characterising the intensity of the IR dust photon field and the escape rate of the plasma from the shocked region. Finally, comparing observed radio maps with those obtained from a multi-zone model enables constraints to be obtained on the direction of stellar motion with respect to the observer.



2016 ◽  
Vol 79 ◽  
pp. 41-48 ◽  
Author(s):  
D. Borka ◽  
S. Capozziello ◽  
P. Jovanović ◽  
V. Borka Jovanović


Sign in / Sign up

Export Citation Format

Share Document