scholarly journals Minima of classically scale-invariant potentials

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Kristjan Kannike ◽  
Kaius Loos ◽  
Luca Marzola

Abstract We propose a new formalism to analyse the extremum structure of scale-invariant effective potentials. The problem is stated in a compact matrix form, used to derive general expressions for the stationary point equation and the mass matrix of a multi-field RG-improved effective potential. Our method improves on (but is not limited to) the Gildener-Weinberg approximation and identifies a set of conditions that signal the presence of a radiative minimum. When the conditions are satisfied at different scales, or in different subspaces of the field space, the effective potential has more than one radiative minimum. We illustrate the method through simple examples and study in detail a Standard-Model-like scenario where the potential admits two radiative minima. Whereas we mostly concentrate on biquadratic potentials, our results carry over to the general case by using tensor algebra.

2016 ◽  
Vol 43 ◽  
pp. 1660203 ◽  
Author(s):  
Arsham Farzinnia

In this talk, I present the minimal classically scale-invariant and [Formula: see text]-symmetric extension of the standard model, containing one additional complex gauge singlet and three flavors of right-handed Majorana neutrinos, incorporated within a renormalizable framework of gravity, consistent with these symmetries; the Agravity. I particularly focus on the slow-roll inflationary paradigm within this framework, by identifying the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry with the inflaton field, constructing its one-loop effective potential, computing the slow-roll parameters and the inflationary observables, and demonstrating the compatibility of the small field inflation scenario with the latest Planck collaboration data sets. a


1993 ◽  
Vol 71 (5-6) ◽  
pp. 227-236 ◽  
Author(s):  
M. E. Carrington

There has been much recent interest in the finite-temperature effective potential of the standard model in the context of the electroweak phase transition. We review the calculation of the effective potential with particular emphasis on the validity of the expansions that are used. The presence of a term that is cubic in the Higgs condensate in the one-loop effective potential appears to indicate a first-order electroweak phase transition. However, in the high-temperature regime, the infrared singularities inherent in massless models produce cubic terms that are of the same order in the coupling. In this paper, we discuss the inclusion of an infinite set of these terms via the ring-diagram summation, and show that the standard model has a first-order phase transition in the weak coupling expansion.


2005 ◽  
Vol 20 (36) ◽  
pp. 2767-2774 ◽  
Author(s):  
ERNEST MA

If a family symmetry exists for the quarks and leptons, the Higgs sector is expected to be enlarged to be able to support the transformation properties of this symmetry. There are, however, three possible generic ways (at tree level) of hiding this symmetry in the context of the Standard Model with just one Higgs doublet. All three mechanisms have their natural realizations in the unification symmetry E6 and one in SO (10). An interesting example based on SO (10)×A4 for the neutrino mass matrix is discussed.


2012 ◽  
Vol 27 (17) ◽  
pp. 1250087 ◽  
Author(s):  
MICHAEL J. BAKER ◽  
JOSÉ BORDES ◽  
HONG-MO CHAN ◽  
TSOU SHEUNG TSUN

The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is "universal," rank-one and rotates (changes its orientation in generation space) with changing scale μ, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo–Kobayashi–Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.


2018 ◽  
Vol 2018 (6) ◽  
Author(s):  
Tommi Markkanen ◽  
Sami Nurmi ◽  
Arttu Rajantie ◽  
Stephen Stopyra

Sign in / Sign up

Export Citation Format

Share Document