scholarly journals LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators

2012 ◽  
Vol 2012 (7) ◽  
Author(s):  
Mads T. Frandsen ◽  
Felix Kahlhoefer ◽  
Anthony Preston ◽  
Subir Sarkar ◽  
Kai Schmidt-Hoberg
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yuta Hamada ◽  
Hikaru Kawai ◽  
Kin-ya Oda ◽  
Kei Yagyu

Abstract We investigate a model with two real scalar fields that minimally generates exponentially different scales in an analog of the Coleman-Weinberg mechanism. The classical scale invariance — the absence of dimensionful parameters in the tree-level action, required in such a scale generation — can naturally be understood as a special case of the multicritical-point principle. This two-scalar model can couple to the Standard Model Higgs field to realize a maximum multicriticality (with all the dimensionful parameters being tuned to critical values) for field values around the electroweak scale, providing a generalization of the classical scale invariance to a wider class of criticality. As a bonus, one of the two scalars can be identified as Higgs-portal dark matter. We find that this model can be consistent with the constraints from dark matter relic abundance, its direct detection experiments, and the latest LHC data, while keeping the perturbativity up to the reduced Planck scale. We then present successful benchmark points satisfying all these constraints: the mass of dark matter is a few TeV, and its scattering cross section with nuclei is of the order of 10−9 pb, reachable in near future experiments. The mass of extra Higgs boson H is smaller than or of the order of 100 GeV, and the cross section of e+e− → ZH can be of fb level for collision energy 250 GeV, targetted at future lepton colliders.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Manimala Chakraborti ◽  
Leszek Roszkowski ◽  
Sebastian Trojanowski

Abstract The recent confirmation by the Fermilab-based Muon g-2 experiment of the (g − 2)μ anomaly has important implications for allowed particle spectra in softly broken supersymmetry (SUSY) models with neutralino dark matter (DM). Generally, the DM has to be quite light, with the mass up to a few hundred GeV, and bino-dominated if it is to provide most of DM in the Universe. Otherwise, a higgsino or wino dominated DM is also allowed but only as a strongly subdominant component of at most a few percent of the total density. These general patterns can easily be found in the phenomenological models of SUSY but in GUT-constrained scenarios this proves much more challenging. In this paper we revisit the issue in the framework of some unified SUSY models with different GUT boundary conditions on the soft masses. We study the so-called non-universal gaugino model (NUGM) in which the mass of the gluino is disunified from those of the bino and the wino and an SO(10) and an SU(5) GUT-inspired models as examples. We find that in these unified frameworks the above two general patterns of DM can also be found, and thus the muon anomaly can also be accommodated, unlike in the simplest frameworks of the CMSSM or the NUHM. We show the resulting values of direct detection cross-section for points that do and do not satisfy the muon anomaly. On the other hand, it will be challenging to access those solutions at the LHC because the resulting spectra are generally very compressed.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Melissa van Beekveld ◽  
Wim Beenakker ◽  
Marrit Schutten ◽  
Jeremy De Wit

In this paper we perform for the first time an in-depth analysis of the spectra in the phenomenological supersymmetric Standard Model that simultaneously offer an explanation for the (g-2)_{\mu}(g−2)μ discrepancy \Delta a_{\mu}Δaμ, result in the right dark-matter relic density \Omega_{DM} h^2ΩDMh2 and are minimally fine-tuned. The resulting spectra may be obtained from [1]. To discuss the experimental exclusion potential for our models, we analyse the resulting LHC phenomenology as well as the sensitivity of dark-matter direct detection experiments to these spectra. We find that the latter type of experiments with sensitivity to the spin-dependent dark-matter–nucleon scattering cross section \sigma_{SD,p}σSD,p will probe all of our found solutions.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tommi Alanne ◽  
Nico Benincasa ◽  
Matti Heikinheimo ◽  
Kristjan Kannike ◽  
Venus Keus ◽  
...  

Abstract Pseudo-Goldstone dark matter is a thermal relic with momentum-suppressed direct-detection cross section. We study the most general model of pseudo-Goldstone dark matter arising from the complex-singlet extension of the Standard Model. The new U(1) symmetry of the model is explicitly broken down to a CP-like symmetry stabilising dark matter. We study the interplay of direct-detection constraints with the strength of cosmic phase transitions and possible gravitational-wave signals. While large U(1)-breaking interactions can generate a large direct-detection cross section, there are blind spots where the cross section is suppressed. We find that sizeable cubic couplings can give rise to a first-order phase transition in the early universe. We show that there exist regions of the parameter space where the resulting gravitational-wave signal can be detected in future by the proposed Big Bang Observer detector.


2010 ◽  
Vol 82 (2) ◽  
Author(s):  
Haipeng An ◽  
Shao-Long Chen ◽  
Rabindra N. Mohapatra ◽  
Shmuel Nussinov ◽  
Yue Zhang

2019 ◽  
Vol 207 ◽  
pp. 04006
Author(s):  
Juan Antonio Aguilar Sánchez

The nature of dark matter remains one of the unsolved questions in modern cosmology and to understand its properties different experimental avenues are being explored. Indirect searches make use of the annihilation or decay products of dark matter as tracers to prove its existence. Unlike direct detections methods, indirect searches do not require specialized detectors as existing astro-particle experiments and facilities can be used to search for signatures of dark matter. Among the decay and annihilation products, neutrinos offer a unique way to search for dark matter since their low cross-section makes them capable of escaping from environments in which gamma rays will be absorbed, like the Sun or the Earth. The IceCube neutrino telescope is not only an excellent astro-particle detector, it also has lively program on dark matter searches with very competitive and complementary results to direct detection limits. These proceedings review the latests results of IceCube regarding the indirect search of dark matter with neutrinos.


Sign in / Sign up

Export Citation Format

Share Document