scholarly journals Dark matter, fine-tuning and (g-2)_{\mu} in the pMSSM

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Melissa van Beekveld ◽  
Wim Beenakker ◽  
Marrit Schutten ◽  
Jeremy De Wit

In this paper we perform for the first time an in-depth analysis of the spectra in the phenomenological supersymmetric Standard Model that simultaneously offer an explanation for the (g-2)_{\mu}(g−2)μ discrepancy \Delta a_{\mu}Δaμ, result in the right dark-matter relic density \Omega_{DM} h^2ΩDMh2 and are minimally fine-tuned. The resulting spectra may be obtained from [1]. To discuss the experimental exclusion potential for our models, we analyse the resulting LHC phenomenology as well as the sensitivity of dark-matter direct detection experiments to these spectra. We find that the latter type of experiments with sensitivity to the spin-dependent dark-matter–nucleon scattering cross section \sigma_{SD,p}σSD,p will probe all of our found solutions.

2018 ◽  
Vol 33 (07) ◽  
pp. 1850035
Author(s):  
Bin Zhu ◽  
Ran Ding ◽  
Tianjun Li

In this paper, we propose a hybrid mediation and hybrid supersymmetry breaking. In particular, the RG-invariant anomaly mediation is considered. Together with additional gravity mediation, the slepton tachyon problem of anomaly mediation is solved automatically. The special properties are that all color sparticles masses fall into several TeV regions due to the large [Formula: see text] and [Formula: see text] which are well beyond the scope of current LHC Run II limits. Unlike the gauge mediation, the dark matter candidate is still the lightest neutralino and the correct dark matter relic density can be realized within the framework of mixed axion-Wino dark matter. Due to the existence of multi-component axion-Wino dark matter, the direct detection cross-section is suppressed to evade the tightest LUX, PandaX bound.


2007 ◽  
Vol 22 (13) ◽  
pp. 931-937 ◽  
Author(s):  
P. H. FRAMPTON

Abelian quiver gauge theories provide candidates for the conformality approach to physics beyond the standard model which possess novel cancellation mechanisms for quadratic divergences. A Z2 symmetry ( R parity) can be imposed and leads naturally to a dark matter candidate which is the Lightest Conformality Particle (LCP), a neutral spin-1 / 2 state with weak interaction annihilation cross-section, mass in the 100 GeV region and relic density of non-baryonic dark matter Ωdm which can be consistent with the observed value Ωdm≃0.24.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Geneviève Bélanger ◽  
Alexander Pukhov ◽  
Carlos E. Yaguna ◽  
Óscar Zapata

Abstract Scenarios for multi-component scalar dark matter based on a single ZN (N ≥ 4) symmetry are simple and well-motivated. In this paper we investigate, for the first time, the phenomenology of the Z5 model for two-component dark matter. This model, which can be seen as an extension of the well-known singlet scalar model, features two complex scalar fields — the dark matter particles — that are Standard Model singlets but have different charges under a Z5 symmetry. The interactions allowed by the Z5 give rise to novel processes between the dark matter particles that affect their relic densities and their detection prospects, which we study in detail. The key parameters of the model are identified and its viable regions are characterized by means of random scans. We show that, unlike the singlet scalar model, dark matter masses below the TeV are still compatible with present data. Even though the dark matter density turns out to be dominated by the lighter component, we find that current and future direct detection experiments may be sensitive to signals from both dark matter particles.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 31
Author(s):  
Elham Aldufeery ◽  
Maien Binjonaid

The neutralino sector of the semi-constrained next-to-minimal supersymmetric standard model is explored under recent experimental constraints, with special attention to dark matter (DM) limits. The effects of the upper and lower bounds of dark matter relic density and recent direct detection constraints on spin-independent and -dependent cross-sections are thoroughly analyzed. Particularly, we show which regions of the parameter space are ruled out due to the different dark matter constraints and the corresponding model-specific parameters: λ,κ,Aλ, and Aκ. We analyze all annihilation and co-annihilation processes (with heavier neutralinos and charginos) that contribute to the dark matter relic density. The mass components of the dark matter candidate, the lightest neutralino χ˜10, are studied, and the decays of heavy neutralinos and charginos, especially χ˜20 and χ˜1+, into the lightest neutralino are examined. We impose semi-universal boundary conditions at the Grand Unified Theory scale, and require a moderate range of tanβ≲10. We find that the allowed parameter space is associated with a heavy mass spectrum in general and that the lightest neutralino is mostly Higgsino with a mass range that resides mostly between 1000 and 1500 GeV. However, smaller mass values can be achieved if the DM candidate is bino-like or singlino-like.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Miguel Levy ◽  
João G. Rosa ◽  
Luís B. Ventura

Abstract We show that warm inflation can be realized within a minimal extension of the Standard Model with three right-handed neutrinos, three complex scalars and a gauged lepton/B-L U(1) symmetry. This simple model can address all the shortcomings of the Standard Model that are not related to fine-tuning, within general relativity, with distinctive experimental signatures that can be probed in the near future. The inflaton field emerges from the collective breaking of the U(1) symmetry, and interacts with two of the right-handed neutrinos, sustaining a high-temperature radiation bath during inflation. The discrete interchange symmetry of the model protects the scalar potential against large thermal corrections and leads to a stable inflaton remnant at late times which can account for dark matter. Consistency of the model and agreement with Cosmic Microwave Background observations naturally yield light neutrino masses below 0.1 eV, while thermal leptogenesis occurs naturally after a smooth exit from inflation into the radiation era.


2017 ◽  
Vol 32 (22) ◽  
pp. 1750131
Author(s):  
Karim Ghorbani ◽  
Parsa Hossein Ghorbani

The ATLAS report in August 2016 provided an upper limit for the pp[Formula: see text][Formula: see text][Formula: see text]diboson and [Formula: see text] cross-sections. We consider a pseudoscalar-mediated fermionic dark matter together with gluon and photon effective operators interacting with the pseudoscalar. Choosing the resonance mass being [Formula: see text], 750 GeV and 2 TeV, beside the relic density and the invisible Higgs decay constraints we constrain more the space of parameters with the diboson and [Formula: see text] cross-section upper bounds. We finally provide some benchmarks consistent with all the constraints. Having exploited a pseudoscalar mediator, the DM-nucleon cross-section is velocity suppressed so that the model evades easily the bounds put by the future direct detection experiments such as XENON1T.


2011 ◽  
Vol 20 (08) ◽  
pp. 1373-1382
Author(s):  
GENEVIEVE BÉLANGER

The neutralino in a singlet extension of the minimal supersymmetric standard model and the mixed sneutrino in a supersymmetric model with right-handed neutrinos are two possible light dark matter candidates. Both can have a large scattering cross section on nuclei thus being compatible with recent results in direct detection experiments. A brief overview of the properties of light supersymmetric dark matter scenarios is presented.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Mathias Becker ◽  
Dominik Döring ◽  
Siddhartha Karmakar ◽  
Heinrich Päs

AbstractWe study the dark matter phenomenology of Standard Model extensions addressing the reported anomaly in the $$R_K$$ R K observable at one-loop. The article covers the case of fermionic singlet DM coupling leptophilically, quarkphilically or amphiphilically to the SM. The setup utilizes a large coupling of the new particle content to the second lepton generation to explain the $$R_K$$ R K anomaly, which in return tends to diminish the dark matter relic density. Further, dark matter direct detection experiments provide stringent bounds even in cases where the dark matter candidate only contributes a small fraction of the observed dark matter energy density. In fact, direct detection rules out all considered models as an explanation for the $$R_K$$ R K anomaly in the case of Dirac dark matter. Conversely, for Majorana dark matter, the $$R_K$$ R K anomaly can be addressed in agreement with direct detection in coannihilation scenarios. For leptophilic dark matter this region only exists for $$M_\text {DM} \lesssim 1000 \, \mathrm {GeV}$$ M DM ≲ 1000 GeV and dark matter is underabundant. Quarkphilic and amphiphilic scenarios even provide narrow regions of parameter space where the observed relic density can be reproduced while offering an explanation to $$R_K$$ R K in agreement with direct detection experiments.


2010 ◽  
Vol 25 (11n12) ◽  
pp. 976-982 ◽  
Author(s):  
JIN MIN YANG

We briefly review the supersymmetric explanation for the cosmic dark matter. Although the neutralino in the minimal supersymmetric model (MSSM), the next-to-minimal supersymmetric model (NMSSM) and the nearly minimal supersymmetric model (nMSSM) can naturally explain the dark matter relic density, the PAMELA result can hardly be explained in these popular models. In the general singlet extension of the MSSM, both the PAMELA result and the relic density can be explained by the singlino-like neutralino. Such singlino-like neutralinos annihilate into the singlet-like Higgs bosons, which are light enough to decay dominantly to muons or electrons, and the annihilation cross section can be greatly enhanced by the Sommerfeld effect via exchanging a light CP-even singlet-like Higgs boson. In this scenario, in order to meet the stringent LEP constraints, the SM-like Higgs boson tends to decay into the singlet Higgs pairs instead of [Formula: see text] and consequently it will give a multi-muon signal hSM → aa → 4µ or hSM → hh → 4a → 8µ at the LHC.


Sign in / Sign up

Export Citation Format

Share Document