scholarly journals Quantum field theories of arbitrary-spin massive multiplets and Palatini quantum gravity

2020 ◽  
Vol 2020 (7) ◽  
Author(s):  
Damiano Anselmi
2006 ◽  
Vol 21 (02) ◽  
pp. 297-312 ◽  
Author(s):  
Y. JACK NG ◽  
H. VAN DAM

Neutrices are additive groups of negligible functions that do not contain any constants except 0. Their calculus was developed by van der Corput and Hadamard in connection with asymptotic series and divergent integrals. We apply neutrix calculus to quantum field theory, obtaining finite renormalizations in the loop calculations. For renormalizable quantum field theories, we recover all the usual physically observable results. One possible advantage of the neutrix framework is that effective field theories can be accommodated. Quantum gravity theories will then appear to be more manageable.


Synthese ◽  
2021 ◽  
Author(s):  
James Read ◽  
Baptiste Le Bihan

AbstractAs a candidate theory of quantum gravity, the popularity of string theory has waxed and waned over the past four decades. One current source of scepticism is that the theory can be used to derive, depending upon the input geometrical assumptions that one makes, a vast range of different quantum field theories, giving rise to the so-called landscape problem. One apparent way to address the landscape problem is to posit the existence of a multiverse; this, however, has in turn drawn heightened attention to questions regarding the empirical testability and predictivity of string theory. We argue first that the landscape problem relies on dubious assumptions and does not motivate a multiverse hypothesis. Nevertheless, we then show that the multiverse hypothesis is scientifically legitimate and could be coupled to string theory for other empirical reasons. Looking at various cosmological approaches, we offer an empirical criterion to assess the scientific status of multiverse hypotheses.


Galaxies ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 23 ◽  
Author(s):  
Manuel Asorey ◽  
Leslaw Rachwal ◽  
Ilya Shapiro

We analyze the unitarity properties of higher derivative quantum field theories which are free of ghosts and ultraviolet singularities. We point out that in spite of the absence of ghosts most of these theories are not unitary. This result confirms the difficulties of finding a consistent quantum field theory of quantum gravity.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1357-1364 ◽  
Author(s):  
E. I. GUENDELMAN

Evidence to the case that classical gravitation provides the clue to make sense out of quantum gravity is presented. The key observation is the existence in classical gravitation of child universe solutions or "almost" solutions, "almost" because of some singularity problems. The difficulties of these child universe solutions that are due to their generic singularity problems will be very likely be cured by quantum effects, just like for example "almost" instanton solutions are made relevant in gauge theories with the breaking of conformal invariance. Some well-motivated modifcations of general relativity where these singularity problems are absent even at the classical level are discussed. High energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space–time. This decoupling could prevent these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account semiclassically gravitational effects. Child universe production in the last stages of black hole evaporation, the prediction of absence of trans-Planckian primordial perturbations, connection to the minimum length hypothesis, and in particular the connection to the maximal curvature hypothesis are discussed. Some discussion of superexcited states in the case these states such as Kaluza–Klein excitations are carried out. Finally, the possibility of obtaining "string like" effects from the wormholes associated with the child universes is discussed.


Author(s):  
Daniel Canarutto

This monograph addresses the need to clarify basic mathematical concepts at the crossroad between gravitation and quantum physics. Selected mathematical and theoretical topics are exposed within a not-too-short, integrated approach that exploits standard and non-standard notions in natural geometric language. The role of structure groups can be regarded as secondary even in the treatment of the gauge fields themselves. Two-spinors yield a partly original ‘minimal geometric data’ approach to Einstein-Cartan-Maxwell-Dirac fields. The gravitational field is jointly represented by a spinor connection and by a soldering form (a ‘tetrad’) valued in a vector bundle naturally constructed from the assumed 2-spinor bundle. We give a presentation of electroweak theory that dispenses with group-related notions, and we introduce a non-standard, natural extension of it. Also within the 2-spinor approach we present: a non-standard view of gauge freedom; a first-order Lagrangian theory of fields with arbitrary spin; an original treatment of Lie derivatives of spinors and spinor connections. Furthermore we introduce an original formulation of Lagrangian field theories based on covariant differentials, which works in the classical and quantum field theories alike and simplifies calculations. We offer a precise mathematical approach to quantum bundles and quantum fields, including ghosts, BRST symmetry and anti-fields, treating the geometry of quantum bundles and their jet prolongations in terms Frölicher's notion of smoothness. We propose an approach to quantum particle physics based on the notion of detector, and illustrate the basic scattering computations in that context.


1985 ◽  
Vol 40 (7) ◽  
pp. 752-773
Author(s):  
H. Stumpf

Unified nonlinear spinorfield models are self-regularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined and below the threshold of preon production the effective dynamics of the model is only concerned with bound state reactions. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived and the effective dynamics for preon-antipreon boson states and three preon-fermion states (with corresponding anti-fermions) was studied in the low energy limit. The transformation of the functional energy representation of the spinorfield into composite particle functional operators produced a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. In this paper these calculations are extended into the high energy range. This leads to formfactors for the composite particle interaction terms which are calculated in a rough approximation and which in principle are observable. In addition, the mathematical and physical interpretation of nonlocal quantum field theories and the meaning of the mapping procedure, its relativistic invariance etc. are discussed.


Sign in / Sign up

Export Citation Format

Share Document