scholarly journals Finite size effects in classical string solutions of the Schrödinger geometry

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Dimitrios Zoakos

Abstract We study finite size corrections to the semiclassical string solutions of the Schrödinger spacetime. We compute the leading order exponential corrections to the infinite size dispersion relation of the single spin giant magnon and of the single spin single spike solutions. The solutions live in a S3 subspace of the five-sphere and extent in the Schrödinger part of the metric. In the limit of zero deformation the finite size dispersion relations flow to the undeformed AdS5 × S5 counterparts and in the infinite size limit the correction term vanishes and the known infinite size dispersion relations are obtained.

2008 ◽  
Vol 2008 (07) ◽  
pp. 105-105 ◽  
Author(s):  
Changrim Ahn ◽  
P Bozhilov

1995 ◽  
Vol 288 ◽  
pp. 325-350 ◽  
Author(s):  
John Bechhoefer ◽  
Valerie Ego ◽  
Sebastien Manneville ◽  
Brad Johnson

We measure the threshold accelerations necessary to excite surface waves in a vertically vibrated fluid container (the Faraday instability). Under the proper conditions, the thresholds and onset wavelengths agree with recent theoretical predictions for a laterally infinite, finite-depth container filled with a viscous fluid. Experimentally, we show that by using a viscous, non-polar fluid, the finite-size effects of sidewalls and the effects of surface contamination can be made negligible. We also show that finite-size corrections are of order h/L, where h is the fluid depth and L the container size. Based on these measurements, one can more easily interpret certain unexpected observations from previous experimental studies of the Faraday instability.


1997 ◽  
Vol 12 (1) ◽  
pp. 124-132 ◽  
Author(s):  
L. E. Levine ◽  
K. Lakshmi Narayan ◽  
K. F. Kelton

The Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation is frequently used to describe phase transformations involving nucleation and growth. The assumptions used in the derivation of this equation, however, are frequently violated when making experimental measurements; use of the JMAK equation for analyzing such data can often produce invalid results. Finite-size effects are among the most serious of these problems. We present modified analytic JMAK equations that correct for the finite-size effects and are roughly independent of both the sample shape and the shape of the growing nuclei. A comparison with computer simulations shows that these modified JMAK equations accurately reproduce the growth behavior over a wide range of conditions.


1997 ◽  
Vol 9 (2) ◽  
pp. 409-412 ◽  
Author(s):  
Samson A. Jenekhe ◽  
Xuejun Zhang ◽  
X. Linda Chen ◽  
Vi-En Choong ◽  
Yongli Gao ◽  
...  

2009 ◽  
Vol 2009 (02) ◽  
pp. P02063 ◽  
Author(s):  
Bernard Nienhuis ◽  
Massimo Campostrini ◽  
Pasquale Calabrese

Sign in / Sign up

Export Citation Format

Share Document