scholarly journals A FB in the SMEFT: precision Z physics at the LHC

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Víctor Bresó-Pla ◽  
Adam Falkowski ◽  
Martín González-Alonso

Abstract We study the forward-backward asymmetry AFB in pp → ℓ+ℓ− at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current AFB data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Rebeca Beltrán ◽  
Giovanna Cottin ◽  
Juan Carlos Helo ◽  
Martin Hirsch ◽  
Arsenii Titov ◽  
...  

Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the NRSMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the NRSMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.


2016 ◽  
Vol 31 (33) ◽  
pp. 1644006 ◽  
Author(s):  
Stefan Antusch ◽  
Oliver Fischer

The nonunitarity of the leptonic mixing matrix is a generic signal of new physics aiming at the generation of the observed neutrino masses. We discuss the Minimal Unitarity Violation (MUV) scheme, an effective field theory framework which represents the class of extensions of the Standard Model (SM) by heavy neutral leptons, and discuss the present bounds on the nonunitarity parameters as well as estimates for the sensitivity of the CEPC, based on the performance parameters from the preCDR.


2020 ◽  
Vol 35 (15n16) ◽  
pp. 2041015 ◽  
Author(s):  
Roberto Franceschini

A summary of the recent results from CERN Yellow Report on the CLIC potential for new physics is presented. Greater emphasis is put on the direct search for new physics scenarios motivated by the open issues of the Standard Model as well as on interpretations of Standard Model measurements as probes of new physics in the context of effective field theory extensions of the Standard Model.


2019 ◽  
Vol 17 (1, spec.issue) ◽  
pp. 89-96
Author(s):  
Lampros Trifyllis

Starting from the Standard Model (SM) of elementary particle physics, we assume that new physics effects can be encoded in higher-dimensional operators added in the SM Lagrangian. The resulting theory, the SM Effective Field Theory (SMEFT), is then used for high-accuracy phenomenological studies. Through this paper, the di-photon decay of the Higgs boson is used as a sample of a concrete calculation in the SMEFT framework.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
José Eliel Camargo-Molina ◽  
Rikard Enberg ◽  
Johan Löfgren

Abstract A first-order Electroweak Phase Transition (EWPT) could explain the observed baryon-antibaryon asymmetry and its dynamics could yield a detectable gravitational wave signature, while the underlying physics would be within the reach of colliders. The Standard Model, however, predicts a crossover transition. We therefore study the EWPT in the Standard Model Effective Field Theory (SMEFT) including dimension-six operators. A first-order EWPT has previously been shown to be possible in the SMEFT. Phenomenology studies have focused on scenarios with a tree-level barrier between minima, which requires a negative Higgs quartic coupling and a new physics scale low enough to raise questions about the validity of the EFT approach. In this work we stress that a first-order EWPT is also possible when the barrier between minima is generated radiatively, the quartic coupling is positive, the scale of new physics is higher, and there is good agreement with experimental bounds. Our calculation is done in a consistent, gauge-invariant way, and we carefully analyze the scaling of parameters necessary to generate a barrier in the potential. We perform a global fit in the relevant parameter space and explicitly find the points with a first-order transition that agree with experimental data. We also briefly discuss the prospects for probing the allowed parameter space using di-Higgs production in colliders.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Christopher W. Murphy

Abstract We present a complete basis of dimension-8 operators in the Standard Model Effective Field Theory. Attention is paid to operators that vanish in the absence of flavor structure. The 44,807 operators are encoded in 1,031 Lagrangian terms. We also briefly discuss a few aspects of phenomenology involving dimension-8 operators, including light-by-light scattering and electroweak precision data.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Lina Alasfar ◽  
Aleksandr Azatov ◽  
Jorge de Blas ◽  
Ayan Paul ◽  
Mauro Valli

Abstract The measurements carried out at LEP and SLC projected us into the precision era of electroweak physics. This has also been relevant in the theoretical interpretation of LHCb and Belle measurements of rare B semileptonic decays, paving the road for new physics with the inference of lepton universality violation in $$ {R}_{K^{\left(\ast \right)}} $$ R K ∗ ratios. The simplest explanation of these flavour anomalies — sizeable one-loop contributions respecting Minimal Flavour Violation — is currently disfavoured by electroweak precision data. In this work, we discuss how to completely relieve the present tension between electroweak constraints and one-loop minimal flavour violating solutions to $$ {R}_{K^{\left(\ast \right)}} $$ R K ∗ . We determine the correlations in the Standard Model Effective Field Theory that highlight the existence of such a possibility. Then, we consider minimal extensions of the Standard Model where our effective-field-theory picture can be realized. We discuss how these solutions to b → sℓℓ anomalies, respecting electroweak precision and without any new source of flavour violation, may point to the existence of a Z′ boson at around the TeV scale, within the discovery potential of LHC, or to leptoquark scenarios.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Minyuan Jiang ◽  
Teng Ma ◽  
Jing Shu

Abstract We describe the on-shell method to derive the Renormalization Group (RG) evolution of Wilson coefficients of high dimensional operators at one loop, which is a necessary part in the on-shell construction of the Standard Model Effective Field Theory (SMEFT), and exceptionally efficient based on the amplitude basis in hand. The UV divergence is obtained by firstly calculating the coefficients of scalar bubble integrals by unitary cuts, then subtracting the IR divergence in the massless bubbles, which can be easily read from the collinear factors we obtained for the Standard Model fields. Examples of deriving the anomalous dimensions at dimension six are presented in a pedagogical manner. We also give the results of contributions from the dimension-8 H4D4 operators to the running of V+V−H2 operators, as well as the running of B+B−H2D2n from H4D2n+4 for general n.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Hao-Lin Li ◽  
Zhe Ren ◽  
Jing Shu ◽  
Ming-Lei Xiao ◽  
Jiang-Hao Yu ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Lucien Heurtier ◽  
Hao-Lin Li ◽  
Huayang Song ◽  
Shufang Su ◽  
Wei Su ◽  
...  

AbstractThe Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a class of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N −1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform aχ2fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.3 (2.4) TeV without (with) the Higgs invisible decay channels at future Higgs factories. The limits are comparable to the indirect constraints obtained via electroweak precision measurements.


Sign in / Sign up

Export Citation Format

Share Document