scholarly journals Precision Higgs couplings in neutral naturalness models: an effective field theory approach

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Lucien Heurtier ◽  
Hao-Lin Li ◽  
Huayang Song ◽  
Shufang Su ◽  
Wei Su ◽  
...  

AbstractThe Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a class of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N −1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform aχ2fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.3 (2.4) TeV without (with) the Higgs invisible decay channels at future Higgs factories. The limits are comparable to the indirect constraints obtained via electroweak precision measurements.

2019 ◽  
Vol 34 (13n14) ◽  
pp. 1940018 ◽  
Author(s):  
Da Liu ◽  
Lian-Tao Wang

We have summarized the results about the precision measurements with the di-boson processes [Formula: see text], [Formula: see text], [Formula: see text] at the HL-LHC by using the effective field theory approach. We have focused on the semi-leptonically decaying channels and make projections on the reach on the mass scale for different new physics scenarios.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Víctor Bresó-Pla ◽  
Adam Falkowski ◽  
Martín González-Alonso

Abstract We study the forward-backward asymmetry AFB in pp → ℓ+ℓ− at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current AFB data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
J. Alonso-González ◽  
J. M. Lizana ◽  
V. Martínez-Fernández ◽  
L. Merlo ◽  
S. Pokorski

AbstractThe Minimal Linear $$\sigma $$ σ Model is a useful theoretical laboratory. One can investigate in a perturbative renormalisable model the properties of the Higgs boson as a pseudo-Goldstone boson, the phenomenological effects of the radial mode of the field $$\texttt {s}$$ s which spontaneously breaks the global SO(5) symmetry and the validity of conclusions based on the Effective Field Theory approach with the field $$\texttt {s}$$ s in the spectrum, after the decoupling of heavy degrees of freedom. In this paper all those issues are discussed in the framework of the Minimal Linear $$\sigma $$ σ Model with CP violating phases leading to pseudoscalar components in the effective Standard Model Yukawa couplings. Also the character of the electroweak phase transition in the presence of the field $$\texttt {s}$$ s is investigated.


2020 ◽  
Vol 17 (02) ◽  
pp. 2050028
Author(s):  
Ayşe Elçi̇boğa Kuday ◽  
Ferhat Özok ◽  
Erdinç Ulaş Saka

We analyze dark matter in most general form of effective field theory approach. To examine the interactions between the weakly interacting massive particles (WIMPs) and the Standard Model (SM) particles, we use the six-dimensional EFT mediated by new physics scale [Formula: see text] at tree level. After implementing a new effective field theory model in FeynRules [FeynRules 2.0 A complete toolbox for tree-level phenomenology, Comput. Phys. Comm. 185(8) (2014) 2250–2300] We investigate the theory and constrain the theory by using relic density generated by MadDM [MadDM v.3.0: A Comprehensive tool for dark matter studies, Phys. Dark Univ. 24 (2019) 100249] tool of MadGraph5_aMC@NLO [The automated computation of tree-level and next-to-leading order differential cross-sections, and their matching to parton shower simulations, J. High Energy Phys. 79 (2014) 2014].


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Zhengwen Liu ◽  
Rafael A. Porto ◽  
Zixin Yang

Abstract Building upon the worldline effective field theory (EFT) formalism for spinning bodies developed for the Post-Newtonian regime, we generalize the EFT approach to Post-Minkowskian (PM) dynamics to include rotational degrees of freedom in a manifestly covariant framework. We introduce a systematic procedure to compute the total change in momentum and spin in the gravitational scattering of compact objects. For the special case of spins aligned with the orbital angular momentum, we show how to construct the radial action for elliptic-like orbits using the Boundary-to-Bound correspondence. As a paradigmatic example, we solve the scattering problem to next-to-leading PM order with linear and bilinear spin effects and arbitrary initial conditions, incorporating for the first time finite-size corrections. We obtain the aligned-spin radial action from the resulting scattering data, and derive the periastron advance and binding energy for circular orbits. We also provide the (square of the) center-of-mass momentum to $$ \mathcal{O}\left({G}^2\right) $$ O G 2 , which may be used to reconstruct a Hamiltonian. Our results are in perfect agreement with the existent literature, while at the same time extend the knowledge of the PM dynamics of compact binaries at quadratic order in spins.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


2016 ◽  
Vol 2016 (11) ◽  
Author(s):  
Michael Fickinger ◽  
Sean Fleming ◽  
Chul Kim ◽  
Emanuele Mereghetti

Sign in / Sign up

Export Citation Format

Share Document