scholarly journals Determination of α(Mz) from an hyperasymptotic approximation to the energy of a static quark-antiquark pair

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Cesar Ayala ◽  
Xabier Lobregat ◽  
Antonio Pineda

Abstract We give the hyperasymptotic expansion of the energy of a static quark-antiquark pair with a precision that includes the effects of the subleading renormalon. The terminants associated to the first and second renormalon are incorporated in the analysis when necessary. In particular, we determine the normalization of the leading renormalon of the force and, consequently, of the subleading renormalon of the static potential. We obtain $$ {Z}_3^F $$ Z 3 F (nf = 3) = $$ 2{Z}_3^V $$ 2 Z 3 V (nf = 3) = 0.37(17). The precision we reach in strict perturbation theory is next-to-next-to-next-to-leading logarithmic resummed order both for the static potential and for the force. We find that the resummation of large logarithms and the inclusion of the leading terminants associated to the renormalons are compulsory to get accurate determinations of $$ {\Lambda}_{\overline{\mathrm{MS}}} $$ Λ MS ¯ when fitting to short-distance lattice data of the static energy. We obtain $$ {\Lambda}_{\overline{\mathrm{MS}}}^{\left({n}_f=3\right)} $$ Λ MS ¯ n f = 3 = 338(12) MeV and α(Mz) = 0.1181(9). We have also MS found strong consistency checks that the ultrasoft correction to the static energy can be computed at weak coupling in the energy range we have studied.

2013 ◽  
Vol 28 (33) ◽  
pp. 1330028 ◽  
Author(s):  
XAVIER GARCIA i TORMO

We review the determination of the strong coupling αs from the comparison of the perturbative expression for the Quantum Chromodynamics static energy with lattice data. Here, we collect all the perturbative expressions needed to evaluate the static energy at the currently known accuracy.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Alexander Lehmann ◽  
Alexander Rothkopf

Abstract We compute the proper real-time interaction potential between a static quark and antiquark in classical lattice gauge theory at finite temperature. Our central result is the determination of the screened real-part of this potential, and we reconfirm the presence of an imaginary part. The real part is intimately related to the back-reaction of the static sources onto the gauge fields, incorporated via Gauss’s law. Differences in the treatment of static sources in quantum and classical lattice gauge theory are discussed.


2010 ◽  
Vol 81 (5) ◽  
Author(s):  
Nora Brambilla ◽  
Jacopo Ghiglieri ◽  
Antonio Vairo

1983 ◽  
Vol 61 (11) ◽  
pp. 1479-1485 ◽  
Author(s):  
I. D. Cox ◽  
W. E. Hagston ◽  
B. J. Holmes

Damping theory of an open system S is usually formulated in terms of projection operators which introduce nonuniqueness into the analysis. An insight into the nature of the approximations that arise from this aspect of the formalism is revealed by considering systems of varying complexity. This leads to the conclusion that the results of higher order perturbation theory approximations may not be meaningful.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1277-1280 ◽  
Author(s):  
Michael Strickland

I present a method for self-consistently including the effects of screening in finite-temperature field theory calculations. The method reproduces the perturbative limit in the weak-coupling limit and for intermediate couplings this method has much better convergence than standard perturbation theory. The method relies on a reorganization of perturbation theory accomplished by shifting the expansion point used to calculate quantum loop corrections. I will present results from a three-loop calculation within this formalism for scalar λϕ4.


1957 ◽  
Vol 28 (12) ◽  
pp. 997-1006 ◽  
Author(s):  
S. J. Bame ◽  
Eugene Haddad ◽  
J. E. Perry ◽  
R. K. Smith

Sign in / Sign up

Export Citation Format

Share Document