scholarly journals Time-delayed electrons from neutral currents at the LHC

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Kingman Cheung ◽  
Kechen Wang ◽  
Zeren Simon Wang

Abstract We investigate long-lived particles (LLPs) produced in pair from neutral currents and decaying into a displaced electron plus two jets at the LHC, utilizing the proposed minimum ionizing particle timing detector at CMS. We study two benchmark models: the R-parity-violating supersymmetry with the lightest neutralinos being the lightest supersymmetric particle and two different U(1) extensions of the standard model with heavy neutral leptons (HNLs). The light neutralinos are produced from the standard model Z-boson decays via small Higgsino components, and the HNLs arise from decays of a heavy gauge boson, Z′. By simulating the signal processes at the HL-LHC with the center-of-mass energy $$ \sqrt{s} $$ s = 14 TeV and integrated luminosity of 3 ab−1, our analyses indicate that the search strategy based on a timing trigger and the final state kinematics has the potential to probe the parameter space that is complementary to other traditional LLP search strategies such as those based on the displaced vertex.

Author(s):  
Roberto Franceschini

We discuss the physics opportunities and challenges presented by high energy lepton colliders in the range of center-of-mass energy between few and several tens of TeV. The focus is on the progress attainable on the study of weak and Higgs interactions in connection with new physics scenarios motivated by the shortcomings of the Standard Model.


2020 ◽  
pp. 2141003
Author(s):  
Joon-Bin Lee ◽  
Jehyun Lee

We present the implementation in the MadAnalysis 5 framework of the CMS-HIG-18-011 search for exotic decays of the Standard Model Higgs boson, in which the Higgs boson is assumed to decay into a pair of light pseudoscalar [Formula: see text], that then further decay into a di-muon and di-[Formula: see text]-jet final state. This analysis considers proton-proton collisions at a center-of-mass energy of 13 TeV and data collected by the CMS experiment in 2016, with an integrated luminosity of 35.9 fb[Formula: see text]. We present a selection of recast predictions, obtained with MadAnalysis 5 and Delphes 3, that include a few differential distributions, yields, and efficiencies. We show that they agree at a level of a few percent with public CMS results.


2009 ◽  
Vol 24 (01) ◽  
pp. 1-15 ◽  
Author(s):  
GUSTAAF BROOIJMANS

Experiments will soon start taking data at CERN's Large Hadron Collider (LHC) with high expectations for discovery of new physics phenomena. Indeed, the LHC's unprecedented center-of-mass energy will allow the experiments to probe an energy regime where the standard model is known to break down. Here, the experiments' capability to observe new resonances in various channels is reviewed.


2015 ◽  
Vol 30 (31) ◽  
pp. 1546009 ◽  
Author(s):  
Konstantinos Kousouris

Jet observables have been exploited extensively during the LHC Run 1 to search for physics beyond the Standard Model. In this article, the most recent results from the ATLAS and CMS collaborations are summarized. Data from proton–proton collisions at 7 and 8 TeV center-of-mass energy have been analyzed to study monojet, dijet, and multijet final states, searching for a variety of new physics signals that include colored resonances, contact interactions, extra dimensions, and supersymmetric particles. The exhaustive searches with jets in Run 1 did not reveal any signal, and the results were used to put stringent exclusion limits on the new physics models.


2020 ◽  
Vol 18 ◽  
pp. 66-77
Author(s):  
Abdeljali Habjial

The Standard Model production of four top quarks in the process pp --> tttt at a center-of-mass energy s1/2=13 Tev. The data collected by the ATLAS detector represents an impressive study potential, with an integrated luminosity of around 139 fb-1. In this manuscript, we present the production process of four top quarks at the LHC as well as some new physics models associated with this process. These models are studied in analysis carried. Some preliminary results are presented, in particular those of a new method for estimating background noise due to false leptons developed.


2013 ◽  
Vol 28 (16) ◽  
pp. 1330026
Author(s):  
STEVE NAHN ◽  
DMITRI TSYBYCHEV

The large hadron collider (LHC) physics program is finally on the way to help uncover the mechanism responsible for electroweak symmetry breaking, with each of experiments collecting up to 5 fb-1 of data at center-of-mass energy of 7 TeV. In this review, we summarize searches for physics beyond the Standard Model at ATLAS and CMS experiments at LHC.


2020 ◽  
pp. 2141008
Author(s):  
Luc Darmé ◽  
Benjamin Fuks

We present the implementation in MadAnalysis 5 of the CMS-TOP-18-003 search for the production of four top quarks in the Standard Model and detail the validation of this implementation. This CMS analysis studies Standard Model four-top production through the same-sign and multi-lepton plus jets channels, using a luminosity of 137 fb[Formula: see text] of proton-proton collisions at a center-of-mass energy of 13 TeV. We validate our implementation work by studying various distributions and event counts describing the properties of the signal in the context of the Standard Model: jet and [Formula: see text]-jet multiplicities, the hadronic activity [Formula: see text], and the number of expected events populating the various analysis signal regions. We then provide a small example of usage of this implementation to constrain a toy new physics model.


Sign in / Sign up

Export Citation Format

Share Document