scholarly journals Dynamic scale anomalous transport in QCD with electromagnetic background

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Mamiya Kawaguchi ◽  
Shinya Matsuzaki ◽  
Xu-Guang Huang

Abstract We discuss phenomenological implications of the anomalous transport induced by the scale anomaly in QCD coupled to an electromagnetic (EM) field, based on a dilaton effective theory. The scale anomalous current emerges in a way perfectly analogous to the conformal transport current induced in a curved spacetime background, or the Nernst current in Dirac and Weyl semimetals — both current forms are equivalent by a “Weyl transformation”. We focus on a spatially homogeneous system of QCD hadron phase, which is expected to be created after the QCD phase transition and thermalization. We find that the EM field can induce a dynamic oscillatory dilaton field which in turn induces the scale anomalous current. As the phenomenological applications, we evaluate the dilepton and diphoton productions induced from the dynamic scale anomalous current, and find that those productions include a characteristic peak structure related to the dynamic oscillatory dilaton, which could be tested in heavy ion collisions. We also briefly discuss the out-of-equilibrium particle production created by a nonadiabatic dilaton oscillation, which happens in a way of the so-called tachyonic preheating mechanism.

1990 ◽  
Vol 42 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
S. Shaheen ◽  
F. D. Becchetti ◽  
D. A. Roberts ◽  
J. W. Jänecke ◽  
R. L. Stern ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-27 ◽  
Author(s):  
S. K. Tiwari ◽  
C. P. Singh

The current status of various thermal and statistical descriptions of particle production in the ultrarelativistic heavy-ion collisions experiments is presented in detail. We discuss the formulation of various types of thermal models of a hot and dense hadron gas (HG) and the methods incorporated in the implementing of the interactions between hadrons. It includes our new excluded-volume model which is thermodynamically consistent. The results of the above models together with the experimental results for various ratios of the produced hadrons are compared. We derive some new universal conditions emerging at the chemical freeze-out of HG fireball showing independence with respect to the energy as well as the structure of the nuclei used in the collision. Further, we calculate various transport properties of HG such as the ratio of shear viscosity-to-entropy using our thermal model and compare with the results of other models. We also show the rapidity as well as transverse mass spectra of various hadrons in the thermal HG model in order to outline the presence of flow in the fluid formed in the collision. The purpose of this review article is to organize and summarize the experimental data obtained in various experiments with heavy-ion collisions and then to examine and analyze them using thermal models so that a firm conclusion regarding the formation of quark-gluon plasma (QGP) can be obtained.


2016 ◽  
Vol 903 ◽  
pp. 204-210 ◽  
Author(s):  
A.A. Bylinkin ◽  
N.S. Chernyavskaya ◽  
A.A. Rostovtsev

2015 ◽  
Vol 37 ◽  
pp. 1560060
Author(s):  
Grigory Ovanesyan

We study the jet quenching effect in heavy ion collisions, based on medium-induced splitting functions calculated from Soft Collinear Effective Theory with Glauber Gluons. Our method is formulated in the language of DGLAP evolution equations with medium-induced splitting functions. In the small-x soft gluon approximation we analytically solve the evolution equations and find an intuitive connection to the energy loss approach. For central Pb+Pb collisions at the LHC we quantify the effect of finite-x corrections for the nuclear modification factor and compare to data.


Particles ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 166-179 ◽  
Author(s):  
David Blaschke ◽  
Lukasz Juchnowski ◽  
Andreas Otto

The kinetic-equation approach to particle production in strong, time-dependent external fields is revisited and three limiting cases are discussed for different field patterns: the Sauter pulse, a harmonic pulse with a Gaussian envelope, and a Poisson-distributed stochastic field. It is shown that for transient subcritical electric fields E ( t ) a finite residual particle number density n ( ∞ ) would be absent if the field-dependence of the dynamical phase in the Schwinger source term would be neglected. In this case the distribution function of created particles follows the law f ( t ) ∼ E 2 ( t ) . Two lessons for particle production in heavy-ion collisions are derived from this exercise. First: the shorter the (Sauter-type) pulse, the higher the residual density of produced particles. Second: although the Schwinger process in a string-type field produces a non-thermal particle spectrum, a Poissonian distribution of the (fluctuating) strings produces a thermal spectrum with an apparent temperature that coincides with the Hawking–Unruh temperature for the mean value of the string tension.


Sign in / Sign up

Export Citation Format

Share Document