scholarly journals Regge OPE blocks and light-ray operators

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Nozomu Kobayashi ◽  
Tatsuma Nishioka ◽  
Yoshitaka Okuyama

Abstract We consider the structure of the operator product expansion (OPE) in conformal field theory by employing the OPE block formalism. The OPE block acted on the vacuum is promoted to an operator and its implications are examined on a non-vacuum state. We demonstrate that the OPE block is dominated by a light-ray operator in the Regge limit, which reproduces precisely the Regge behavior of conformal blocks when used inside scalar four-point functions. Motivated by this observation, we propose a new form of the OPE block, called the light-ray channel OPE block that has a well-behaved expansion dominated by a light-ray operator in the Regge limit. We also show that the two OPE blocks have the same asymptotic form in the Regge limit and confirm the assertion that the Regge limit of a pair of spacelike-separated operators in a Minkowski patch is equivalent to the OPE limit of a pair of timelike-separated operators associated with the original pair in a different Minkowski patch.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Simon Caron-Huot ◽  
Joshua Sandor

Abstract The Operator Product Expansion is a useful tool to represent correlation functions. In this note we extend Conformal Regge theory to provide an exact OPE representation of Lorenzian four-point correlators in conformal field theory, valid even away from Regge limit. The representation extends convergence of the OPE by rewriting it as a double integral over continuous spins and dimensions, and features a novel “Regge block”. We test the formula in the conformal fishnet theory, where exact results involving nontrivial Regge trajectories are available.


2012 ◽  
Vol 86 (10) ◽  
Author(s):  
Duccio Pappadopulo ◽  
Slava Rychkov ◽  
Johnny Espin ◽  
Riccardo Rattazzi

1997 ◽  
Vol 12 (21) ◽  
pp. 3723-3738 ◽  
Author(s):  
A. Shafiekhani ◽  
M. R. Rahimi Tabar

It is shown explicitly that the correlation functions of conformal field theories (CFT) with the logarithmic operators are invariant under the differential realization of Borel subalgebra of [Formula: see text]-algebra. This algebra is constructed by tensor-operator algebra of differential representation of ordinary [Formula: see text]. This method allows us to write differential equations which can be used to find general expression for three- and four-point correlation functions possessing logarithmic operators. The operator product expansion (OPE) coefficients of general logarithmic CFT are given up to third level.


2002 ◽  
Vol 17 (11) ◽  
pp. 683-693 ◽  
Author(s):  
KAZUO HOSOMICHI ◽  
YUJI SATOH

In the conformal field theories having affine SL(2) symmetry, we study the operator product expansion (OPE) involving primary fields in highest weight representations. For this purpose, we analyze properties of primary fields with definite SL(2) weights, and calculate their two- and three-point functions. Using these correlators, we show that the correct OPE is obtained when one of the primary fields belongs to the degenerate highest weight representation. We briefly comment on the OPE in the SL (2,R) WZNW model.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2607-2615 ◽  
Author(s):  
STEFAN HOLLANDS ◽  
ROBERT M. WALD

To make sense of quantum field theory in an arbitrary (globally hyperbolic) curved space–time, the theory must be formulated in a local and covariant manner in terms of locally measureable field observables. Since a generic curved space–time does not possess symmetries or a unique notion of a vacuum state, the theory also must be formulated in a manner that does not require symmetries or a preferred notion of a "vacuum state" and "particles". We propose such a formulation of quantum field theory, wherein the operator product expansion (OPE) of the quantum fields is elevated to a fundamental status, and the quantum field theory is viewed as being defined by its OPE. Since the OPE coefficients may be better behaved than any quantities having to do with states, we suggest that it may be possible to perturbatively construct the OPE coefficients — and, thus, the quantum field theory. By contrast, ground/vacuum states — in space–times, such as Minkowski space–time, where they may be defined — cannot vary analytically with the parameters of the theory. We argue that this implies that composite fields may acquire nonvanishing vacuum state expectation values due to nonperturbative effects. We speculate that this could account for the existence of a nonvanishing vacuum expectation value of the stress-energy tensor of a quantum field occurring at a scale much smaller than the natural scales of the theory.


1991 ◽  
Vol 06 (20) ◽  
pp. 3571-3598 ◽  
Author(s):  
NOUREDDINE CHAIR ◽  
CHUAN-JIE ZHU

Some tetrahedra in SUk(2) Chern-Simons-Witten theory are computed. The results can be used to compute an arbitrary tetrahedron inductively by fusing with the fundamental representation. The results obtained are in agreement with those of quantum groups. By associating a (finite) topological field theory (FTFT) to every rational conformal field theory (RCFT), we show that the pentagon and hexagon equations in RCFT follow directly from some skein relations in FTFT. By generalizing the operation of surgery on links in FTFT, we also derive an explicit expression for the modular transformation matrix S(k) of the one-point conformal blocks on a torus in RCFT and the equations satisfied by S(k), in agreement with those required in RCFT. The implication of our results on the general program of classifying RCFT is also discussed.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jean-François Fortin ◽  
Wen-Jie Ma ◽  
Valentina Prilepina ◽  
Witold Skiba

Abstract We formulate a set of general rules for computing d-dimensional four-point global conformal blocks of operators in arbitrary Lorentz representations in the context of the embedding space operator product expansion formalism [1]. With these rules, the procedure for determining any conformal block of interest is reduced to (1) identifying the relevant projection operators and tensor structures and (2) applying the conformal rules to obtain the blocks. To facilitate the bookkeeping of contributing terms, we introduce a convenient diagrammatic notation. We present several concrete examples to illustrate the general procedure as well as to demonstrate and test the explicit application of the rules. In particular, we consider four-point functions involving scalars S and some specific irreducible representations R, namely 〈SSSS〉, 〈SSSR〉, 〈SRSR〉 and 〈SSRR〉 (where, when allowed, R is a vector or a fermion), and determine the corresponding blocks for all possible exchanged representations.


Sign in / Sign up

Export Citation Format

Share Document