scholarly journals Islands in cosmology

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Thomas Hartman ◽  
Yikun Jiang ◽  
Edgar Shaghoulian

Abstract A quantum extremal island suggests that a region of spacetime is encoded in the quantum state of another system, like the encoding of the black hole interior in Hawking radiation. We study conditions for islands to appear in general spacetimes, with or without black holes. They must violate Bekenstein’s area bound in a precise sense, and the boundary of an island must satisfy several other information-theoretic inequalities. These conditions combine to impose very strong restrictions, which we apply to cosmological models. We find several examples of islands in crunching universes. In particular, in the four-dimensional FRW cosmology with radiation and a negative cosmological constant, there is an island near the turning point when the geometry begins to recollapse. In a two-dimensional model of JT gravity in de Sitter spacetime, there are islands inside crunches that are encoded at future infinity or inside bubbles of Minkowski spacetime. Finally, we discuss simple tensor network toy models for islands in cosmology and black holes.

2002 ◽  
Vol 17 (20) ◽  
pp. 2747-2747
Author(s):  
A. BEESHAM

The singularity theorems of general relativity predict that gravitational collapse finally ends up in a spacetime singularity1. The cosmic censorship hypothesis (CCH) states that such a singularity is covered by an event horizon2. Despite much effort, there is no rigorous formulation or proof of the CCH. In view of this, examples that appear to violate the CCH and lead to naked singularities, in which non-spacelike curves can emerge, rather than black holes, are important to shed more light on the issue. We have studied several collapse scenarios which can lead to both situations3. In the case of the Vaidya-de Sitter spacetime4, we have shown that the naked singularities that arise are of the strong curvature type. Both types of singularities can also arise in higher dimensional Vaidya and Tolman-Bondi spacetimes, but black holes are favoured in some sense by the higher dimensions. The charged Vaidya-de Sitter spacetime also exhibits both types of singularities5.


2011 ◽  
Vol 696 (1-2) ◽  
pp. 167-172 ◽  
Author(s):  
Tanwi Ghosh ◽  
Soumitra SenGupta

2012 ◽  
Vol 21 (03) ◽  
pp. 1250022 ◽  
Author(s):  
SUSHANT G. GHOSH

We find an exact nonstatic charged BTZ-like solutions, in (N+1)-dimensional Einstein gravity in the presence of negative cosmological constant and a nonlinear Maxwell field defined by a power s of the Maxwell invariant, which describes the gravitational collapse of charged null fluid in an anti-de Sitter background. Considering the situation that a charged null fluid injects into the initially an anti-de Sitter spacetime, we show that a black hole form rather than a naked singularity, irrespective of spacetime dimensions, from gravitational collapse in accordance with cosmic censorship conjecture. The structure and locations of the apparent horizons of the black holes are also determined. It is interesting to see that, in the static limit and when N = 2, one can retrieve 2+1 BTZ black hole solutions.


2019 ◽  
Vol 7 (6) ◽  
Author(s):  
Theodore Jacobson ◽  
Manus Visser

The static patch of de Sitter spacetime and the Rindler wedge of Minkowski spacetime are causal diamonds admitting a true Killing field, and they behave as thermodynamic equilibrium states under gravitational perturbations. We explore the extension of this gravitational thermodynamics to all causal diamonds in maximally symmetric spacetimes. Although such diamonds generally admit only a conformal Killing vector, that seems in all respects to be sufficient. We establish a Smarr formula for such diamonds and a ``first law" for variations to nearby solutions. The latter relates the variations of the bounding area, spatial volume of the maximal slice, cosmological constant, and matter Hamiltonian. The total Hamiltonian is the generator of evolution along the conformal Killing vector that preserves the diamond. To interpret the first law as a thermodynamic relation, it appears necessary to attribute a negative temperature to the diamond, as has been previously suggested for the special case of the static patch of de Sitter spacetime. With quantum corrections included, for small diamonds we recover the ``entanglement equilibrium'' result that the generalized entropy is stationary at the maximally symmetric vacuum at fixed volume, and we reformulate this as the stationarity of free conformal energy with the volume not fixed.


Sign in / Sign up

Export Citation Format

Share Document