scholarly journals Dark matter interacting via a massive spin-2 mediator in warped extra-dimensions

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract We study dark matter interacting via a massive spin-2 mediator. To have a consistent effective theory for the spin-2 particle, we work in a warped extra-dimensional model such that the mediator(s) are the Kaluza-Klein (KK) modes of the 5D graviton. We pay close attention to dark matter annihilations into KK-gravitons. Due to the high energy behavior of longitudinal modes of spin-2 fields, these channels exhibit a tremendous growth at large center of mass energies $$ \sqrt{s} $$ s if only one spin-2 mediator is considered. For the first time, we include the full KK-tower in this dark matter production process and find that this growth is unphysical and cancels once the full field content of the extra-dimensional theory is taken into account. Interestingly, this implies that it is not possible to approximate the results obtained in the full theory with a reduced set of effective interactions once $$ \sqrt{s} $$ s is greater than the first graviton mass. This casts some doubt on the universal applicability of previous studies with spin-2 mediators within an EFT framework and prompts us to revisit the phenomenological allowed parameter space of gravitationally interacting scalar dark matter in warped extra-dimensions.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


Author(s):  
Yoo-Jin Kang ◽  
Hyun Min Lee

Abstract We revisit the scenario of a massive spin-2 particle as the mediator for communicating between dark matter of arbitrary spin and the Standard Model. Taking the general couplings of the spin-2 particle in the effective theory, we discuss the thermal production mechanisms for dark matter with various channels and the dark matter self-scattering. For WIMP and light dark matter cases, we impose the relic density condition and various experimental constraints from direct and indirect detections, precision measurements as well as collider experiments. We show that it is important to include the annihilation of dark matter into a pair of spin-2 particles in both allowed and forbidden regimes, thus opening up the consistent parameter space for dark matter. The benchmark models of the spin-2 mediator are presented in the context of the warped extra dimension and compared to the simplified models.


2015 ◽  
Vol 30 (28n29) ◽  
pp. 1545009 ◽  
Author(s):  
Chao-Qiang Geng ◽  
Da Huang ◽  
Chang Lai

We review the multi-component decaying dark matter (DM) scenario to explain the possible cosmic ray excesses in the positron fraction, the positron and electron respective fluxes, and the total [Formula: see text] flux observed by AMS-02. We show that the two-component DM model can fit the AMS-02 datasets. In particular, we demonstrate that the heavier DM component with its mass around 1 TeV dominantly decaying through the [Formula: see text] and [Formula: see text]-channels describes the high-energy behavior of the total [Formula: see text] flux data above 500 GeV, while the lighter one of O(100) GeV mainly through the [Formula: see text]-channel explains the substructure around 100 GeV.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Nicolás Bernal ◽  
Andrea Donini ◽  
Miguel G. Folgado ◽  
Nuria Rius

Abstract We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP’s in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 109 GeV. We comment on the similarities of the results in both extra-dimensional models.


Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 47 ◽  
Author(s):  
James Pinfold

MoEDAL is a pioneering LHC experiment designed to search for anomalously ionizing messengers of new physics. It started data taking at the LHC at a center-of-mass energy of 13 TeV, in 2015. Its ground breaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: Are there extra dimensions or new symmetries? What is the mechanism for the generation of mass? Does magnetic charge exist? What is the nature of dark matter? After a brief introduction, we report on MoEDAL’s progress to date, including our past, current and expected future physics output. We also discuss two new sub-detectors for MoEDAL: MAPP (Monopole Apparatus for Penetrating Particles) now being prototyped at IP8; and MALL (Monopole Apparatus for very Long Lived particles), currently in the planning stage. I conclude with a brief description of our program for LHC Run-3.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Nicolás Bernal ◽  
Andrea Donini ◽  
Miguel G. Folgado ◽  
Nuria Rius

Abstract We study for the first time the case in which Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the standard model particles in an extra-dimensional Randall-Sundrum scenario. We assume that both the dark matter and the standard model are localized in the IR-brane and only interact via gravitational mediators, namely the graviton, the Kaluza-Klein gravitons and the radion. We found that in the early Universe DM could be generated via two main processes: the direct freeze-in and the sequential freeze-in. The regions where the observed DM relic abundance is produced are largely compatible with cosmological and collider bounds.


2013 ◽  
Vol 28 (08) ◽  
pp. 1330012
Author(s):  
PIERRE-HUGUES BEAUCHEMIN ◽  
REYHANEH REZVANI

Monojet events consist in event topologies with a high transverse momentum jet and a large amount of missing transverse energy. They constitute a promising final state that could lead to phenomena beyond the Standard Model. The theoretical models giving rise to such a signature include the pair production of Weakly Interacting Massive Particles, as dark matter candidates, and models of large extra dimensions. Monojet events can even be used to measure the Standard Model properties of Z boson decays, provided that the precision of the analysis is high enough. Such precision can be achieved by using data-driven determinations of the Standard Model contributions to monojet events. Exotics searches for new physics in such a final state have been performed at all high energy hadronic collider experiments since SPS. The ATLAS and CMS analyses with 7 TeV LHC data provide the latest and most useful information obtained from monojet studies. Their results are presented and discussed in this review paper.


Sign in / Sign up

Export Citation Format

Share Document