scholarly journals Applications of alpha space

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Daniel Rutter ◽  
Balt C. van Rees

Abstract We extend the definition of ‘alpha space’ as introduced in [1] to two spacetime dimensions. We discuss how this can be used to find conformal block decompositions of known functions and how to easily recover several lightcone bootstrap results. In the second part of the paper we establish a connection between alpha space and the Lorentzian inversion formula of [2].

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shrideh Khalaf Al-Omari ◽  
Serkan Araci

AbstractThis paper considers the definition and the properties of the generalized natural transform on sets of generalized functions. Convolution products, convolution theorems, and spaces of Boehmians are described in a form of auxiliary results. The constructed spaces of Boehmians are achieved and fulfilled by pursuing a deep analysis on a set of delta sequences and axioms which have mitigated the construction of the generalized spaces. Such results are exploited in emphasizing the virtual definition of the generalized natural transform on the addressed sets of Boehmians. The constructed spaces, inspired from their general nature, generalize the space of integrable functions of Srivastava et al. (Acta Math. Sci. 35B:1386–1400, 2015) and, subsequently, the extended operator with its good qualitative behavior generalizes the classical natural transform. Various continuous embeddings of potential interests are introduced and discussed between the space of integrable functions and the space of integrable Boehmians. On another aspect as well, several characteristics of the extended operator and its inversion formula are discussed.


1987 ◽  
Vol 10 (4) ◽  
pp. 671-692 ◽  
Author(s):  
Ahmed I. Zayed

In this paper we extend the definition of the continuous Jacobi transform to a class of generalized functions and obtain a generalized inversion formula for it. As a by-product of our technique we obtain a necessary and sufficient condition for an analytic functionF(λ)inReλ>0to be the continuous Jacobi transform of a generalized function.


1987 ◽  
Vol 30 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Stevan Pilipović

There are several approaches to the Stieltjes transform of generalized functions ([1, 10, 5, 6, 3, 2]). In this paper we use the definition of the distributional Stieltjes transform of index ρ (ρ ∈ ℝ\(−ℕ0); ℕ0 = ℕ∪{0}), Sρ-transform, given by Lavoine and Misra [3]. The Sρ-transform is defined for a subspace of the Schwartz space (ℝ) while in [10, 5, 6, 2] the Stieltjes transform is defined for the elements of appropriate spaces of generalized functions. In these spaces differentiation is not defined which means that the Stieltjes transform of some important distributions, for example δ(k)(x − a), a≧0, k ∈ ℕ, is meaningless in the sense of [10, 5, 6, 2]. It is easy to see that the distributions δ(k)(x − a), a≧0, k ∈ ℕ, have the Sρ-transform for ρ>−k, ρ∈ℝ\(−ℕ0). These facts favour the approach to the Stieltjes transform given in [3].


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Juan Yin ◽  
Sheng-Liang Yang

We introduce the definition of the r-central coefficient matrices of a given Riordan array. Applying this definition and Lagrange Inversion Formula, we can calculate the r-central coefficient matrices of Catalan triangles and obtain some interesting triangles and sequences.


Author(s):  
Matthieu Josuat-Vergès

The [Formula: see text]-convolution of real probability measures, introduced by Bożejko, generalizes both free and Boolean convolutions. It is linearized by the [Formula: see text]-cumulants, and Yoshida gave a combinatorial formula for moments in terms of [Formula: see text]-cumulants, that implicitly defines the latter. It relies on the definition of an appropriate weight on noncrossing partitions. We give here two different expressions for the [Formula: see text]-cumulants: the first one is a simple variant of Lagrange inversion formula, and the second one is a combinatorial inversion of Yoshida’s formula involving Schröder trees.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
V. G. Gupta ◽  
Bhavna Shrama ◽  
Adem Kiliçman

We propose a new definition of a fractional-order Sumudu transform for fractional differentiable functions. In the development of the definition we use fractional analysis based on the modified Riemann-Liouville derivative that we name the fractional Sumudu transform. We also established a relationship between fractional Laplace and Sumudu duality with complex inversion formula for fractional Sumudu transform and apply new definition to solve fractional differential equations.


1999 ◽  
Vol 153 ◽  
pp. 155-188 ◽  
Author(s):  
Jay Jorgenson ◽  
Serge Lang

AbstractIn a famous paper, Asai indicated how to develop a theory of Eisenstein series for arbitrary number fields, using hyperbolic 3-space to take care of the complex places. Unfortunately he limited himself to class number 1. The present paper gives a detailed exposition of the general case, to be used for many applications. First, it is shown that the Eisenstein series satisfy the authors’ definition of regularized products satisfying the generalized Lerch formula, and the basic axioms which allow the systematic development of the authors’ theory, including the Cramér theorem. It is indicated how previous results of Efrat and Zograf for the strict Hilbert modular case extend to arbitrary number fields, for instance a spectral decomposition of the heat kernel periodized with respect to SL2 of the integers of the number field. This gives rise to a theta inversion formula, to which the authors’ Gauss transform can be applied. In addition, the Eisenstein series can be twisted with the heat kernel, thus encoding an infinite amount of spectral information in one item coming from heat Eisenstein series. The main expected spectral formula is stated, but a complete exposition would require a substantial amount of space, and is currently under consideration.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


1979 ◽  
Vol 46 ◽  
pp. 125-149 ◽  
Author(s):  
David A. Allen

No paper of this nature should begin without a definition of symbiotic stars. It was Paul Merrill who, borrowing on his botanical background, coined the termsymbioticto describe apparently single stellar systems which combine the TiO absorption of M giants (temperature regime ≲ 3500 K) with He II emission (temperature regime ≳ 100,000 K). He and Milton Humason had in 1932 first drawn attention to three such stars: AX Per, CI Cyg and RW Hya. At the conclusion of the Mount Wilson Ha emission survey nearly a dozen had been identified, and Z And had become their type star. The numbers slowly grew, as much because the definition widened to include lower-excitation specimens as because new examples of the original type were found. In 1970 Wackerling listed 30; this was the last compendium of symbiotic stars published.


Sign in / Sign up

Export Citation Format

Share Document