scholarly journals Hilbert-Asai Eisenstein series, regularized products, and heat kernels

1999 ◽  
Vol 153 ◽  
pp. 155-188 ◽  
Author(s):  
Jay Jorgenson ◽  
Serge Lang

AbstractIn a famous paper, Asai indicated how to develop a theory of Eisenstein series for arbitrary number fields, using hyperbolic 3-space to take care of the complex places. Unfortunately he limited himself to class number 1. The present paper gives a detailed exposition of the general case, to be used for many applications. First, it is shown that the Eisenstein series satisfy the authors’ definition of regularized products satisfying the generalized Lerch formula, and the basic axioms which allow the systematic development of the authors’ theory, including the Cramér theorem. It is indicated how previous results of Efrat and Zograf for the strict Hilbert modular case extend to arbitrary number fields, for instance a spectral decomposition of the heat kernel periodized with respect to SL2 of the integers of the number field. This gives rise to a theta inversion formula, to which the authors’ Gauss transform can be applied. In addition, the Eisenstein series can be twisted with the heat kernel, thus encoding an infinite amount of spectral information in one item coming from heat Eisenstein series. The main expected spectral formula is stated, but a complete exposition would require a substantial amount of space, and is currently under consideration.

2016 ◽  
Vol 12 (03) ◽  
pp. 691-723 ◽  
Author(s):  
Ren-He Su

In 1975, Cohen constructed a kind of one-variable modular forms of half-integral weight, say [Formula: see text], whose [Formula: see text]th Fourier coefficient only occurs when [Formula: see text] is congruent to 0 or 1 modulo 4. The space of modular forms whose Fourier coefficients have the above property is called Kohnen plus space, initially introduced by Kohnen in 1980. Recently, Hiraga and Ikeda generalized the plus space to the spaces for half-integral weight Hilbert modular forms with respect to general totally real number fields. The [Formula: see text]th Fourier coefficients [Formula: see text] of a Hilbert modular form of parallel weight [Formula: see text] lying in the generalized Kohnen plus space does not vanish only if [Formula: see text] is congruent to a square modulo 4. In this paper, we use an adelic way to construct Eisenstein series of parallel half-integral weight belonging to the generalized Kohnen plus spaces and give an explicit form for their Fourier coefficients. These series give a generalization of the one introduced by Cohen. Moreover, we show that the Kohnen plus space is generated by the cusp forms and the Eisenstein series we constructed as a vector space over [Formula: see text].


Author(s):  
Juan de Lara ◽  
Esther Guerra

AbstractModelling is an essential activity in software engineering. It typically involves two meta-levels: one includes meta-models that describe modelling languages, and the other contains models built by instantiating those meta-models. Multi-level modelling generalizes this approach by allowing models to span an arbitrary number of meta-levels. A scenario that profits from multi-level modelling is the definition of language families that can be specialized (e.g., for different domains) by successive refinements at subsequent meta-levels, hence promoting language reuse. This enables an open set of variability options given by all possible specializations of the language family. However, multi-level modelling lacks the ability to express closed variability regarding the availability of language primitives or the possibility to opt between alternative primitive realizations. This limits the reuse opportunities of a language family. To improve this situation, we propose a novel combination of product lines with multi-level modelling to cover both open and closed variability. Our proposal is backed by a formal theory that guarantees correctness, enables top-down and bottom-up language variability design, and is implemented atop the MetaDepth multi-level modelling tool.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shrideh Khalaf Al-Omari ◽  
Serkan Araci

AbstractThis paper considers the definition and the properties of the generalized natural transform on sets of generalized functions. Convolution products, convolution theorems, and spaces of Boehmians are described in a form of auxiliary results. The constructed spaces of Boehmians are achieved and fulfilled by pursuing a deep analysis on a set of delta sequences and axioms which have mitigated the construction of the generalized spaces. Such results are exploited in emphasizing the virtual definition of the generalized natural transform on the addressed sets of Boehmians. The constructed spaces, inspired from their general nature, generalize the space of integrable functions of Srivastava et al. (Acta Math. Sci. 35B:1386–1400, 2015) and, subsequently, the extended operator with its good qualitative behavior generalizes the classical natural transform. Various continuous embeddings of potential interests are introduced and discussed between the space of integrable functions and the space of integrable Boehmians. On another aspect as well, several characteristics of the extended operator and its inversion formula are discussed.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Daniel Rutter ◽  
Balt C. van Rees

Abstract We extend the definition of ‘alpha space’ as introduced in [1] to two spacetime dimensions. We discuss how this can be used to find conformal block decompositions of known functions and how to easily recover several lightcone bootstrap results. In the second part of the paper we establish a connection between alpha space and the Lorentzian inversion formula of [2].


2012 ◽  
Vol 15 (01) ◽  
pp. 1250001 ◽  
Author(s):  
JIM GATHERAL ◽  
TAI-HO WANG

In this article, we derive a new most-likely-path (MLP) approximation for implied volatility in terms of local volatility, based on time-integration of the lowest order term in the heat-kernel expansion. This new approximation formula turns out to be a natural extension of the well-known formula of Berestycki, Busca and Florent. Various other MLP approximations have been suggested in the literature involving different choices of most-likely-path; our work fixes a natural definition of the most-likely-path. We confirm the improved performance of our new approximation relative to existing approximations in an explicit computation using a realistic S&P500 local volatility function.


1987 ◽  
Vol 10 (4) ◽  
pp. 671-692 ◽  
Author(s):  
Ahmed I. Zayed

In this paper we extend the definition of the continuous Jacobi transform to a class of generalized functions and obtain a generalized inversion formula for it. As a by-product of our technique we obtain a necessary and sufficient condition for an analytic functionF(λ)inReλ>0to be the continuous Jacobi transform of a generalized function.


Author(s):  
Seiji Kuga

In this paper, we give linear relations between the Fourier coefficients of a special Hilbert modular form of half integral weight and some arithmetic functions. As a result, we have linear relations for the special [Formula: see text]-values over certain totally real number fields.


Author(s):  
Liliana Maria Favre

Systems and applications aligned with new paradigms such as cloud computing and internet of the things are becoming more complex and interconnected, expanding the areas in which they are susceptible to attacks. Their security can be addressed by using model-driven engineering (MDE). In this context, specific IoT or cloud computing metamodels emerged to support the systematic development of software. In general, they are specified through semiformal metamodels in MOF style. This article shows the theoretical foundations of a method for automatically constructing secure metamodels in the context of realizations of MDE such as MDA. The formal metamodeling language Nereus and systems of transformation rules to bridge the gap between formal specifications and MOF are described. The main contribution of this article is the definition of a system of transformation rules called NEREUStoMOF for transforming automatically formal metamodeling specifications in Nereus to semiformal-MOF metamodels annotated in OCL.


1973 ◽  
Vol 38 (2) ◽  
pp. 215-226
Author(s):  
Satoko Titani

In [4], I introduced a quasi-Boolean algebra, and showed that in a formal system of simple type theory, from which the cut rule is omitted, wffs form a quasi-Boolean algebra, and that the cut-elimination theorem can be formulated in algebraic language. In this paper we use the result of [4] to prove the cut-elimination theorem in simple type theory. The theorem was proved by M. Takahashi [2] in 1967 by using the concept of Schütte's semivaluation. We use maximal ideals of a quasi-Boolean algebra instead of semivaluations.The logical system we are concerned with is a modification of Schütte's formal system of simple type theory in [1] into Gentzen style.Inductive definition of types.0 and 1 are types.If τ1, …, τn are types, then (τ1, …, τn) is a type.Basic symbols.a1τ, a2τ, … for free variables of type τ.x1τ, x2τ, … for bound variables of type τ.An arbitrary number of constants of certain types.An arbitrary number of function symbols with certain argument places.


Sign in / Sign up

Export Citation Format

Share Document