scholarly journals Swing surfaces and holographic entanglement beyond AdS/CFT

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Luis Apolo ◽  
Hongliang Jiang ◽  
Wei Song ◽  
Yuan Zhong

Abstract We propose a holographic entanglement entropy prescription for general states and regions in two models of holography beyond AdS/CFT known as flat3/BMSFT and (W)AdS3/WCFT. Flat3/BMSFT is a candidate of holography for asymptotically flat three- dimensional spacetimes, while (W)AdS3/WCFT is relevant in the study of black holes in the real world. In particular, the boundary theories are examples of quantum field theories that feature an infinite dimensional symmetry group but break Lorentz invariance. Our holographic entanglement entropy proposal is given by the area of a swing surface that consists of ropes, which are null geodesics emanating from the entangling surface at the boundary, and a bench, which is a spacelike geodesic connecting the ropes. The proposal is supported by an extension of the Lewkowycz-Maldacena argument, reproduces previous results based on the Rindler method, and satisfies the first law of entanglement entropy.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Jin-Yi Pang ◽  
Jiunn-Wei Chen

AbstractThe renormalization of entanglement entropy of quantum field theories is investigated in the simplest setting with a λϕ4 scalar field theory. The 3+1 dimensional spacetime is separated into two regions by an infinitely flat 2-dimensional interface. The entanglement entropy of the system across the interface has an elegant geometrical interpretation using the replica trick, which requires putting the field theory on a curved spacetime background. We demonstrate that the theory, and hence the entanglement entropy, is renormalizable at order λ once all the relevant operators up to dimension 4 are included in the action. This exercise has a one-to-one correspondence to entanglement entropy interpretation of the black hole entropy which suggests that our treatment is sensible. Our study suggests that entanglement entropy is renormalizable and is a physical quantity.


2001 ◽  
Vol 16 (11) ◽  
pp. 1913-1925 ◽  
Author(s):  
HARUHIKO TERAO

The advantageous points of ERG in applications to non-perturbative analyses of quantum field theories are discussed in comparison with the Schwinger-Dyson equations. First we consider the relation between these two formulations specially by examining the large N field theories. In the second part we study the phase structure of dynamical symmetry breaking in three dimensional QED as a typical example of the practical application.


2018 ◽  
Vol 33 (36) ◽  
pp. 1850226 ◽  
Author(s):  
Chanyong Park

We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincaré AdS space with a finite cutoff can be reinterpreted as that of the dual field theory deformed by either a boost or [Formula: see text] deformation. For the boost case, we show that, although it trivially acts on the underlying theory, it nontrivially affects the entanglement entropy due to the length contraction. For a three-dimensional AdS, we show that the effect of the boost transformation can be reinterpreted as the rescaling of the energy scale, similar to the [Formula: see text] deformation. Under the boost and [Formula: see text] deformation, the [Formula: see text]-function of the entanglement entropy exactly shows the features expected by the Zamolodchikov’s [Formula: see text]-theorem. The deformed theory is always stationary at a UV fixed point and monotonically flows to another CFT in the IR fixed point. We also show that the holographic entanglement entropy in a Poincaré cutoff AdS space can reproduce the exact same result of the [Formula: see text] deformed theory on a two-dimensional sphere.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1221
Author(s):  
Satoshi Iso ◽  
Takato Mori ◽  
Katsuta Sakai

This is a continuation of our previous works on entanglement entropy (EE) in interacting field theories. In previous papers, we have proposed the notion of ZM gauge theory on Feynman diagrams to calculate EE in quantum field theories and shown that EE consists of two particular contributions from propagators and vertices. We have also shown that the purely non-Gaussian contributions from interaction vertices can be interpreted as renormalized correlation functions of composite operators. In this paper, we will first provide a unified matrix form of EE containing both contributions from propagators and (classical) vertices, and then extract further non-Gaussian contributions based on the framework of the Wilsonian renormalization group. It is conjectured that the EE in the infrared is given by a sum of all the vertex contributions in the Wilsonian effective action.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
José J. Fernández-Melgarejo ◽  
Javier Molina-Vilaplana

Abstract In this work we provide a method to study the entanglement entropy for non-Gaussian states that minimize the energy functional of interacting quantum field theories at arbitrary coupling. To this end, we build a class of non-Gaussian variational trial wavefunctionals with the help of exact nonlinear canonical transformations. The calculability bonanza shown by these variational ansatze allows us to compute the entanglement entropy using the prescription for the ground state of free theories. In free theories, the entanglement entropy is determined by the two-point correlation functions. For the interacting case, we show that these two-point correlators can be replaced by their nonperturbatively corrected counterparts. Upon giving some general formulae for general interacting models we calculate the entanglement entropy of half space and compact regions for the ϕ4 scalar field theory in 2D. Finally, we analyze the rôle played by higher order correlators in our results and show that strong subadditivity is satisfied.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Davide Gaiotto ◽  
Justin Kulp

Abstract We review the properties of orbifold operations on two-dimensional quantum field theories, either bosonic or fermionic, and describe the “Orbifold groupoids” which control the composition of orbifold operations. Three-dimensional TQFT’s of Dijkgraaf-Witten type will play an important role in the analysis. We briefly discuss the extension to generalized symmetries and applications to constrain RG flows.


2019 ◽  
Vol 7 (5) ◽  
Author(s):  
Abhinav Prem ◽  
Dominic Williamson

We discuss the procedure for gauging on-site Z_2Z2 global symmetries of three-dimensional lattice Hamiltonians that permute quasi-particles and provide general arguments demonstrating the non-Abelian character of the resultant gauged theories. We then apply this general procedure to lattice models of several well known fracton phases: two copies of the X-Cube model, two copies of Haah’s cubic code, and the checkerboard model. Where the former two models possess an on-site Z_2Z2 layer exchange symmetry, that of the latter is generated by the Hadamard gate. For each of these models, upon gauging, we find non-Abelian subdimensional excitations, including non-Abelian fractons, as well as non-Abelian looplike excitations and Abelian fully mobile pointlike excitations. By showing that the looplike excitations braid non-trivially with the subdimensional excitations, we thus discover a novel gapped quantum order in 3D, which we term a ‘panoptic" fracton order. This points to the existence of parent states in 3D from which both topological quantum field theories and fracton states may descend via quasi-particle condensation. The gauged cubic code model represents the first example of a gapped 3D phase supporting (inextricably) non-Abelian fractons that are created at the corners of fractal operators.


Sign in / Sign up

Export Citation Format

Share Document