scholarly journals Charged and neutral $$ {\overline{B}}_{u,d,s} $$ → γ form factors from light cone sum rules at NLO

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Tadeusz Janowski ◽  
Ben Pullin ◽  
Roman Zwicky

Abstract We present the first analytic $$ \mathcal{O}\left({\alpha}_s\right) $$ O α s -computation at twist-1,2 of the $$ {\overline{B}}_{u,d,s} $$ B ¯ u , d , s → γ form factors within the framework of sum rules on the light-cone. These form factors describe the charged decay $$ {\overline{B}}_u\to \gamma {\mathrm{\ell}}^{-}\overline{v} $$ B ¯ u → γ ℓ − v ¯ , contribute to the flavour changing neutral currents $$ {\overline{B}}_{d,s}\to \gamma {\mathrm{\ell}}^{+}{\mathrm{\ell}}^{-} $$ B ¯ d , s → γ ℓ + ℓ − and serve as inputs to more complicated processes. We provide a fit in terms of a z-expansion with correlation matrix and extrapolate the form factors to the kinematic endpoint by using the gBB*γ couplings as a constraint. Analytic results are available in terms of multiple polylogarithms in the supplementary material. We give binned predictions for the $$ {\overline{B}}_u\to \gamma {\mathrm{\ell}}^{-}\overline{v} $$ B ¯ u → γ ℓ − v ¯ branching ratio along with the associated correlation matrix. By comparing with three SCET-computations we extract the inverse moment B-meson distribution amplitude parameter λB = 360(110) MeV. The uncertainty thereof could be improved by a more dedicated analysis. In passing, we extend the photon distribution amplitude to include quark mass corrections with a prescription for the magnetic vacuum susceptibility, χq, compatible with the twist-expansion. The values χq = 3.21(15) GeV−2 and χs = 3.79(17) GeV−2 are obtained.

2011 ◽  
Vol 26 (37) ◽  
pp. 2761-2782 ◽  
Author(s):  
ZHI-GANG WANG

In this paper, we study the [Formula: see text] form-factors with the light-cone QCD sum rules, where the B-meson light-cone distribution amplitudes are used. In calculations, we observe that the line-shapes of the B-meson light-cone distribution amplitude ϕ+(ω) have significant impacts on the values of the form-factors, and expect to obtain severe constraints on the parameters of the B-meson light-cone distribution amplitudes from the experimental data in the future.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Hui-Hui Duan ◽  
Yong-Lu Liu ◽  
Ming-Qiu Huang

AbstractThe weak decay process of $$\varOmega _c$$ Ω c to $$\varXi $$ Ξ is calculated in the method of QCD light-cone sum rule. The decay width of $$\varOmega _c^0 \rightarrow \varXi ^- l^+ \nu _l$$ Ω c 0 → Ξ - l + ν l and its decay branching ratio are also calculated with the form factors from this work’s calculation. To the twist-6 distribution amplitudes, the form factors $$f_1=0.66\pm 0.02, f_2=-0.76\pm 0.03, g_1=0.06\pm 0.01$$ f 1 = 0.66 ± 0.02 , f 2 = - 0.76 ± 0.03 , g 1 = 0.06 ± 0.01 and $$g_2=-0.44\pm 0.01$$ g 2 = - 0.44 ± 0.01 are given at zero recoil point. The result of the semileptonic decay width of $$\varOmega _c^0 \rightarrow \varXi ^-l^+\nu _l$$ Ω c 0 → Ξ - l + ν l is $$\varGamma =(7.51\pm 0.36)\times 10^{-15}~\mathrm{{GeV}}$$ Γ = ( 7.51 ± 0.36 ) × 10 - 15 GeV , and the prediction of the decay branching ratio $$Br(\varOmega _c^0\rightarrow \varXi ^-l^+\nu _l)=(3.06\pm 0.15)\times 10^{-3}$$ B r ( Ω c 0 → Ξ - l + ν l ) = ( 3.06 ± 0.15 ) × 10 - 3 . These results fit well with other works, and the decay width and branching ratio are improved. This not too small branching ratio gives a good direction to explore this decay channel in the future experiments.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ulrich Haisch ◽  
Amando Hala

Abstract We estimate the form factors that parametrise the hadronic matrix elements of proton-to-pion transitions with the help of light-cone sum rules. These form factors are relevant for semi-leptonic proton decay channels induced by baryon-number violating dimension-six operators, as typically studied in the context of grand unified theories. We calculate the form factors in a kinematical regime where the momentum transfer from the proton to the pion is space-like and extrapolate our final results to the regime that is relevant for proton decay. In this way, we obtain estimates for the form factors that show agreement with the state-of-the-art calculations in lattice QCD, if systematic uncertainties are taken into account. Our work is a first step towards calculating more involved proton decay channels where lattice QCD results are not available at present.


2019 ◽  
Vol 2019 (12) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Alexander Khodjamirian ◽  
Javier Virto

Sign in / Sign up

Export Citation Format

Share Document