scholarly journals Geometric Models for Quasicrystals I. Delone Sets of Finite Type

1999 ◽  
Vol 21 (2) ◽  
pp. 161-191 ◽  
Author(s):  
J. C. Lagarias
2019 ◽  
pp. 40-47
Author(s):  
E. A. Mironchik

The article discusses the method of solving the task 18 on the Unified State Examination in Informatics (Russian EGE). The main idea of the method is to write the conditions of the problem utilizing the language of formal logic, using elementary predicates. According to the laws of logic the resulting complex logical expression would be transformed into an expression, according to which a geometric model is supposed to be constructed which allows to obtain an answer. The described algorithm does allow high complexity problem to be converted into a simple one.


2001 ◽  
Author(s):  
Greg Turk ◽  
F. S. Nooruddin ◽  
James F. O'Brien ◽  
Gary Yngve

Author(s):  
Michael Atiyah ◽  
Matilde Marcolli

Abstract This paper, completed in its present form by the second author after the first author passed away in 2019, describes an intended continuation of the previous joint work on anyons in geometric models of matter. This part outlines a construction of anyon tensor networks based on four-dimensional orbifold geometries and braid representations associated with surface-braids defined by multisections of the orbifold normal bundle of the surface of orbifold points.


2021 ◽  
pp. 1-18
Author(s):  
YOTAM SMILANSKY ◽  
YAAR SOLOMON

Abstract We prove that in every compact space of Delone sets in ${\mathbb {R}}^d$ , which is minimal with respect to the action by translations, either all Delone sets are uniformly spread or continuously many distinct bounded displacement equivalence classes are represented, none of which contains a lattice. The implied limits are taken with respect to the Chabauty–Fell topology, which is the natural topology on the space of closed subsets of ${\mathbb {R}}^d$ . This topology coincides with the standard local topology in the finite local complexity setting, and it follows that the dichotomy holds for all minimal spaces of Delone sets associated with well-studied constructions such as cut-and-project sets and substitution tilings, whether or not finite local complexity is assumed.


2016 ◽  
Vol 30 (1-2) ◽  
pp. 119-127 ◽  
Author(s):  
Iván Ramos-Diez ◽  
Joaquín Navarro-Hevia ◽  
Roberto San Martín Fernández ◽  
Virginia Díaz-Gutiérrez ◽  
Jorge Mongil-Manso

1996 ◽  
Vol 05 (04) ◽  
pp. 441-461 ◽  
Author(s):  
STAVROS GAROUFALIDIS

Recently Ohtsuki [Oh2], motivated by the notion of finite type knot invariants, introduced the notion of finite type invariants for oriented, integral homology 3-spheres. In the present paper we propose another definition of finite type invariants of integral homology 3-spheres and give equivalent reformulations of our notion. We show that our invariants form a filtered commutative algebra. We compare the two induced filtrations on the vector space on the set of integral homology 3-spheres. As an observation, we discover a new set of restrictions that finite type invariants in the sense of Ohtsuki satisfy and give a set of axioms that characterize the Casson invariant. Finally, we pose a set of questions relating the finite type 3-manifold invariants with the (Vassiliev) knot invariants.


Sign in / Sign up

Export Citation Format

Share Document