wedge volume
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Vivi Pedersen ◽  
et al.

Table S1 (source to sink analysis), and the influence of dynamic topography (Fig. S1), effective elastic thickness (Fig. S2), and paleo sea level Fig. S3) on shelf wedge volume and bedrock deflection.<br>


2021 ◽  
Author(s):  
Vivi Pedersen ◽  
et al.

Table S1 (source to sink analysis), and the influence of dynamic topography (Fig. S1), effective elastic thickness (Fig. S2), and paleo sea level Fig. S3) on shelf wedge volume and bedrock deflection.<br>


Soil Systems ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Bruno Timóteo Rodrigues ◽  
Demetrio Antonio Zema ◽  
Javier González-Romero ◽  
Mikael Timóteo Rodrigues ◽  
Sérgio Campos ◽  
...  

Check dams act as soil collectors during floods, thus retaining a large amount of sediments. The estimation of the soil volumes stored behind a check dam is a key activity for a proper design of these control works and for evaluation of soil delivery after restoration measures at watershed level. Several topographic techniques have been proposed for this activity, but the sediment wedge mapping tools are complex and time consuming. Conversely, the use of unmanned aerial vehicles (UAVs) has been proposed to support aerophotogrammetric techniques for several survey activities with promising results. However, surveys by UAVs have never applied to calculate the size of the sediment wedge behind check dams that are built in fire-affected watersheds, where soil loss and sediment transport may be high after a wildfire. To fill this gap, this study evaluates the efficiency and efficacy of aerophotogrammetric surveys using UAVs to estimate the volume of the sediments stored behind ten check dams, built as post-fire channel treatment in a forest watershed of Castilla La Mancha (Central Eastern Spain). The results of the aerophotogrammetric technique were compared to traditional topographic surveys using a total station and GNSS/RTK, assumed as reference. The estimation of sediment wedge volume provided by UAVs was more accurate (mean RMSE of 0.432), extensive (density of mapped points of 328 m−2) and quick (two days of fieldwork) compared to surveys using the topographic method (RMSE < 0.04 m, six days of field work and density of mapped points of 0.194 m−2) by the topographic method. The differences in the sediment volume estimated by the two methods were not significant, but the UAV method was more accurate for the larger check dams. Moreover, a significant correlation was observed between the volume estimates provided by the two methods, shown by a coefficient of determination close to 0.98. Overall, these results propose a larger use of the aerial surveys for mapping activities in channels regulated by check dams, such as those built for restoration of fire-affected forest watersheds.


2018 ◽  
Vol 12 (11) ◽  
pp. 3589-3604 ◽  
Author(s):  
Claire Bernard-Grand'Maison ◽  
Wayne Pollard

Abstract. Quantifying ground-ice volume on a regional scale is necessary to assess the vulnerability of permafrost landscapes to thaw-induced disturbance like terrain subsidence and to quantify potential carbon release. Ice wedges (IWs) are a ubiquitous ground-ice landform in the Arctic. Their high spatial variability makes generalizing their potential role in landscape change problematic. IWs form polygonal networks that are visible on satellite imagery from surface troughs. This study provides a first approximation of IW ice volume for the Fosheim Peninsula, Ellesmere Island, a continuous permafrost area characterized by polar desert conditions and extensive ground ice. We perform basic GIS analyses on high-resolution satellite imagery to delineate IW troughs and estimate the associated IW ice volume using a 3-D subsurface model. We demonstrate the potential of two semi-automated IW trough delineation methods, one newly developed and one marginally used in previous studies, to increase the time efficiency of this process compared to manual delineation. Our methods yield acceptable IW ice volume estimates, validating the value of GIS to estimate IW volume on much larger scales. We estimate that IWs are potentially present on 50 % of the Fosheim Peninsula (∼3000 km2), where 3.81 % of the top 5.9 m of permafrost could be IW ice.


2018 ◽  
Author(s):  
Claire Bernard-Grand'Maison ◽  
Wayne Pollard

Abstract. Quantifying ground ice volume on a regional scale is necessary to assess the vulnerability of permafrost landscapes to thaw induced disturbance like terrain subsidence and to quantify potential carbon release. Ice wedges (IWs) are a ubiquitous ground ice landform in the Arctic. Their high spatial variability makes generalizing their potential role in landscape change problematic. IWs form polygonal networks visible on satellite imagery from active layer surface troughs. This study focuses on the estimation of IW ice volume for the Fosheim Peninsula, Ellesmere Island, a continuous permafrost area characterized by polar desert conditions and extensive ground ice. We perform basic GIS analyses on high resolution satellite imagery to delineate IW troughs and estimate the associated IW ice volume using a 3D subsurface model. We demonstrate two semi-automated IW trough delineation methods with different strengths to increase time-efficiency of this process, done manually in previous studies. Our methods yield acceptable IW ice volume estimates validating the value of GIS to estimate IW volume on much larger scales. We estimate that IWs are potentially present on 50 % of the Fosheim Peninsula (± 3000 km2) where 3.81 % of the top 5.9 m of permafrost could be IW ice.


2016 ◽  
Vol 30 (1-2) ◽  
pp. 119-127 ◽  
Author(s):  
Iván Ramos-Diez ◽  
Joaquín Navarro-Hevia ◽  
Roberto San Martín Fernández ◽  
Virginia Díaz-Gutiérrez ◽  
Jorge Mongil-Manso

2012 ◽  
Vol 21 (1) ◽  
pp. 206-212 ◽  
Author(s):  
Ronald van Heerwaarden ◽  
Michael Najfeld ◽  
Martijn Brinkman ◽  
Romain Seil ◽  
Henning Madry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document