Lie Symmetry Reductions and Exact Solutions of an Option-Pricing Equation for Large Agents

2015 ◽  
Vol 13 (4) ◽  
pp. 1753-1763 ◽  
Author(s):  
Senkepeng Louisa Lekalakala ◽  
Tanki Motsepa ◽  
Chaudry Masood Khalique
Filomat ◽  
2012 ◽  
Vol 26 (5) ◽  
pp. 957-964 ◽  
Author(s):  
Masood Khalique

In this paper we study the coupled integrable dispersionless system (CIDS), which arises in the analysis of several problems in applied mathematics and physics. Lie symmetry analysis is performed on CIDS and symmetry reductions and exact solutions with the aid of simplest equation method are obtained. In addition, the conservation laws of the CIDS are also derived using the multiplier (and homotopy) approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sachin Kumar ◽  
Ilyas Khan ◽  
Setu Rani ◽  
Behzad Ghanbari

In soliton theory, the dynamics of solitary wave solutions may play a crucial role in the fields of mathematical physics, plasma physics, biology, fluid dynamics, nonlinear optics, condensed matter physics, and many others. The main concern of this present article is to obtain symmetry reductions and some new explicit exact solutions of the (2 + 1)-dimensional Sharma–Tasso–Olver (STO) equation by using the Lie symmetry analysis method. The infinitesimals for the STO equation were achieved under the invariance criteria of Lie groups. Then, the two stages of symmetry reductions of the governing equation are obtained with the help of an optimal system. Meanwhile, this Lie symmetry method will reduce the STO equation into new partial differential equations (PDEs) which contain a lesser number of independent variables. Based on numerical simulation, the dynamical characteristics of the solitary wave solutions illustrate multiple-front wave profiles, solitary wave solutions, kink wave solitons, oscillating periodic solitons, and annihilation of parabolic wave structures via 3D plots.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050221
Author(s):  
S. Kumar ◽  
D. Kumar

In this present article, the new [Formula: see text]-dimensional modified Calogero-Bogoyavlenskii-Schiff (mCBS) equation is studied. Using the Lie group of transformation method, all of the vector fields, commutation table, invariant surface condition, Lie symmetry reductions, infinitesimal generators and explicit solutions are constructed. As we all know, an optimal system contains constructively important information about the various types of exact solutions and it also offers clear understandings into the exact solutions and its features. The symmetry reductions of [Formula: see text]-dimensional mCBS equation is derived from an optimal system of one-dimensional subalgebra of the Lie invariance algebra. Then, the mCBS equation can further be reduced into a number of nonlinear ODEs. The generated explicit solutions have different wave structures of solitons and they are analyzed graphically and physically in order to exhibit their dynamical behavior through 3D, 2D-shapes and respective contour plots. All the produced solutions are definitely new and totally different from the earlier study of the Manukure and Zhou (Int. J. Mod. Phys. B 33, (2019)). Some of these solutions are demonstrated by the means of solitary wave profiles like traveling wave, multi-solitons, doubly solitons, parabolic waves and singular soliton. The calculations show that this Lie symmetry method is highly powerful, productive and useful to study analytically other nonlinear evolution equations in acoustics physics, plasma physics, fluid dynamics, mathematical biology, mathematical physics and many other related fields of physical sciences.


2021 ◽  
pp. 2150252
Author(s):  
Sachin Kumar ◽  
Monika Niwas

By applying the two efficient mathematical methods particularly with regard to the classical Lie symmetry approach and generalized exponential rational function method, numerous exact solutions are constructed for a (2 + 1)-dimensional Bogoyavlenskii equation, which describes the interaction of Riemann wave propagation along the spatial axes. Moreover, we obtain the infinitesimals, all the possible vector fields, optimal system, and Lie symmetry reductions. The governing Bogoyavlenskii equation is converted into various nonlinear ordinary differential equations through two stages of Lie symmetry reductions. Accordingly, abundant exact closed-form solutions are obtained explicitly in terms of independent arbitrary functions, rational functions, trigonometric functions, and hyperbolic functions with arbitrary free parameters. The dynamical behavior of the resulting soliton solutions is presented through 3D-plots via numerical simulation. Eventually, single solitons, multi-solitons with oscillations, kink wave with breather-type solitons, and single lump-type solitons are obtained. The proposed mathematical techniques are effective, trustworthy, and reliable mathematical tools to work out new exact closed-form solutions of various types of nonlinear evolution equations in mathematical physics and engineering sciences.


2016 ◽  
Vol 22 (2) ◽  
Author(s):  
Youwei Zhang

AbstractIn the present paper, the Sharma–Tasso–Olever (STO) equation is considered by the Lie symmetry analysis. All of the geometric vector fields to the STO equation are obtained, and then the symmetry reductions and exact solutions of the equation are investigated. Our results witness that symmetry analysis is a very efficient and powerful technique in finding the solutions of the proposed equation.


Sign in / Sign up

Export Citation Format

Share Document