Generalized Lambert Series and Euler’s Pentagonal Number Theorem

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Mircea Merca
2017 ◽  
Vol 13 (08) ◽  
pp. 2097-2113 ◽  
Author(s):  
Shubho Banerjee ◽  
Blake Wilkerson

We study the Lambert series [Formula: see text], for all [Formula: see text]. We obtain the complete asymptotic expansion of [Formula: see text] near [Formula: see text]. Our analysis of the Lambert series yields the asymptotic forms for several related [Formula: see text]-series: the [Formula: see text]-gamma and [Formula: see text]-polygamma functions, the [Formula: see text]-Pochhammer symbol and the Jacobi theta functions. Some typical results include [Formula: see text] and [Formula: see text], with relative errors of order [Formula: see text] and [Formula: see text] respectively.


2014 ◽  
Vol 142 (10) ◽  
pp. 3411-3419 ◽  
Author(s):  
Florian Luca ◽  
Yohei Tachiya

1996 ◽  
pp. 357-370 ◽  
Author(s):  
Ronald Evans
Keyword(s):  

2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Liuquan Wang

Andrews and Merca investigated a truncated version of Euler's pentagonal number theorem and showed that the coefficients of the truncated series are nonnegative. They also considered the truncated series arising from Jacobi's triple product identity, and they conjectured that its coefficients are nonnegative. This conjecture was posed by Guo and Zeng independently and confirmed by Mao and Yee using different approaches. In this paper, we provide a new combinatorial proof of their nonnegativity result related to Euler's pentagonal number theorem. Meanwhile, we find an analogous result for a truncated series arising from Jacobi's triple product identity in a different manner.


10.37236/1796 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
James A. Sellers ◽  
Andrew V. Sills ◽  
Gary L. Mullen

In 1958, Richard Guy proved that the number of partitions of $n$ into odd parts greater than one equals the number of partitions of $n$ into distinct parts with no powers of 2 allowed, which is closely related to Euler's famous theorem that the number of partitions of $n$ into odd parts equals the number of partitions of $n$ into distinct parts. We consider extensions of Guy's result, which naturally lead to a new algorithm for producing bijections between various equivalent partition ideals of order 1, as well as to two new infinite families of parity results which follow from Euler's Pentagonal Number Theorem and a well-known series-product identity of Jacobi.


Author(s):  
Rishabh Agnihotri

In 1981, Zagier conjectured that the Lambert series associated to the weight 12 cusp form [Formula: see text] should have an asymptotic expansion in terms of the nontrivial zeros of the Riemann zeta function. This conjecture was proven by Hafner and Stopple. In 2017 and 2019, Chakraborty et al. established an asymptotic relation between Lambert series associated to any primitive cusp form (for full modular group, congruence subgroup and in Maass form case) and the nontrivial zeros of the Riemann zeta function. In this paper, we study Lambert series associated with primitive Hilbert modular form and establish similar kind of asymptotic expansion.


Author(s):  
Mircea Merca ◽  
Ae Ja Yee

In this paper, we investigate the sum of distinct parts that appear at least 2 times in all the partitions of [Formula: see text] providing new combinatorial interpretations for this sum. A connection with subsets of [Formula: see text] is given in this context. We provide two different proofs of our results: analytic and combinatorial. In addition, considering the multiplicity of parts in a partition, we provide a combinatorial proof of the truncated pentagonal number theorem of Andrews and Merca.


Sign in / Sign up

Export Citation Format

Share Document