Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons

2013 ◽  
Vol 71 (10) ◽  
pp. 1961-1975 ◽  
Author(s):  
Ana Palanca ◽  
Iñigo Casafont ◽  
María T. Berciano ◽  
Miguel Lafarga
Cell ◽  
2021 ◽  
Vol 184 (9) ◽  
pp. 2520
Author(s):  
Joseph Tcherkezian ◽  
Perry A. Brittis ◽  
Franziska Thomas ◽  
Philippe P. Roux ◽  
John G. Flanagan

2014 ◽  
Vol 55 (2) ◽  
pp. 305-318 ◽  
Author(s):  
Xiang Li ◽  
Joseph B. Rayman ◽  
Eric R. Kandel ◽  
Irina L. Derkatch

Traffic ◽  
2011 ◽  
Vol 12 (10) ◽  
pp. 1457-1466 ◽  
Author(s):  
Domenico Lupo ◽  
Christine Vollmer ◽  
Markus Deckers ◽  
David U. Mick ◽  
Ivo Tews ◽  
...  

Physiologia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 22-33
Author(s):  
Shelby C. Osburn ◽  
Christopher G. Vann ◽  
David D. Church ◽  
Arny A. Ferrando ◽  
Michael D. Roberts

Muscle protein synthesis and proteolysis are tightly coupled processes. Given that muscle growth is promoted by increases in net protein balance, it stands to reason that bolstering protein synthesis through amino acids while reducing or inhibiting proteolysis could be a synergistic strategy in enhancing anabolism. However, there is contradictory evidence suggesting that the proper functioning of proteolytic systems in muscle is required for homeostasis. To add clarity to this issue, we sought to determine if inhibiting different proteolytic systems in C2C12 myotubes in conjunction with acute and chronic leucine treatments affected markers of anabolism. In Experiment 1, myotubes underwent 1-h, 6-h, and 24-h treatments with serum and leucine-free DMEM containing the following compounds (n = 6 wells per treatment): (i) DMSO vehicle (CTL), (ii) 2 mM leucine + vehicle (Leu-only), (iii) 2 mM leucine + 40 μM MG132 (20S proteasome inhibitor) (Leu + MG132), (iv) 2 mM leucine + 50 μM calpeptin (calpain inhibitor) (Leu + CALP), and (v) 2 mM leucine + 1 μM 3-methyladenine (autophagy inhibitor) (Leu + 3MA). Protein synthesis levels significantly increased (p < 0.05) in the Leu-only and Leu + 3MA 6-h treatments compared to CTL, and levels were significantly lower in Leu + MG132 and Leu + CALP versus Leu-only and CTL. With 24-h treatments, total protein yield was significantly lower in Leu + MG132 cells versus other treatments. Additionally, the intracellular essential amino acid (EAA) pool was significantly greater in 24-h Leu + MG132 treatments versus other treatments. In a follow-up experiment, myotubes were treated for 48 h with CTL, Leu-only, and Leu + MG132 for morphological assessments. Results indicated Leu + MG132 yielded significantly smaller myotubes compared to CTL and Leu-only. Our data are limited in scope due to the utilization of select proteolysis inhibitors. However, this is the first evidence to suggest proteasome and calpain inhibition with MG132 and CALP, respectively, abrogate leucine-induced protein synthesis in myotubes. Additionally, longer-term Leu + MG132 treatments translated to an atrophy phenotype. Whether or not proteasome inhibition in vivo reduces leucine- or EAA-induced anabolism remains to be determined.


1989 ◽  
Vol 9 (2) ◽  
pp. 847-850 ◽  
Author(s):  
M E Lambert ◽  
Z A Ronai ◽  
I B Weinstein ◽  
J I Garrels

Exposure of primary human fibroblasts or simian virus 40-transformed human keratinocytes to several different classes of DNA damage, including UV light C (254 nm), resulted in a rapid increase in the expression of human major histocompatibility class I (MHC-I) proteins. MHC-I induction was also detected after exposure to low doses of the protein synthesis inhibitor cycloheximide, suggesting that MHC-I induction by DNA damage may be a component in a derepressible cellular SOS pathway.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Juliet Goldsmith ◽  
Timothy Marsh ◽  
Saurabh Asthana ◽  
Andrew M. Leidal ◽  
Deepthisri Suresh ◽  
...  

AbstractAutophagy promotes protein degradation, and therefore has been proposed to maintain amino acid pools to sustain protein synthesis during metabolic stress. To date, how autophagy influences the protein synthesis landscape in mammalian cells remains unclear. Here, we utilize ribosome profiling to delineate the effects of genetic ablation of the autophagy regulator, ATG12, on translational control. In mammalian cells, genetic loss of autophagy does not impact global rates of cap dependent translation, even under starvation conditions. Instead, autophagy supports the translation of a subset of mRNAs enriched for cell cycle control and DNA damage repair. In particular, we demonstrate that autophagy enables the translation of the DNA damage repair protein BRCA2, which is functionally required to attenuate DNA damage and promote cell survival in response to PARP inhibition. Overall, our findings illuminate that autophagy impacts protein translation and shapes the protein landscape.


Sign in / Sign up

Export Citation Format

Share Document