calpain inhibitor
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 45)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Shanna Hamilton ◽  
Radmila Terentyeva ◽  
Roland Veress ◽  
Fruzsina Perger ◽  
Benjamin Y. Martin ◽  
...  

Cardiac RYR2-mediated sarcoplasmic Ca2+ (SR) release is essential for matching increased energy demand during fight-or-flight response with mitochondrial metabolic output by delivering Ca2+ into the mitochondrial matrix to activate Ca2+-dependent Krebs cycle dehydrogenases. RYR2 complex gain-of-function mutations associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) have been linked to mitochondrial structural damage and enhanced production of reactive oxygen species (ROS). Despite being critical for arrhythmogenesis in CPVT, the exact causes of these phenomena remain undetermined. Taking advantage of a new rat model of CPVT induced by heterozygous RYR2 gain-of-function mutation S2222L, we tested how RYR2 overactivity alters mitochondrial Ca2+ and ROS handling, and how these changes cause mitochondrial structural defects. Injection of epinephrine (1 mg/kg) and caffeine (120 mg/kg) induced bigamy and bidirectional VT in vivo in 100% of CPVT rats. Simultaneous whole-cell patch clamp and confocal Ca2+-imaging demonstrated that under β-adrenergic stimulation with isoproterenol (50 nM), CPVT ventricular myocytes (VMs) exhibited severe Ca2+ mishandling and high propensity for generation of spontaneous Ca2+ waves (SCWs) that cause arrhythmogenic afterdepolarizations. Diminished Ca2+ transient amplitude in CPVT VMs resulted in a significant reduction in mitochondrial matrix–[Ca2+], and thereby a mito-ROS surge, visualized using matrix-targeted biosensors mtRCaMP1h and MLS-HyPer, respectively. Importantly, using novel Ca2+-biosensors targeted to intermembrane space (IMS-GECO), we uncovered that [Ca2+] in this compartment reaches 1 µM, sufficient for activation of Ca2+-dependent protease μ-calpain. Adenoviral overexpression of IMS-targeted calpastatin, an endogenous calpain inhibitor, reduced mito-ROS, restored cytosolic Ca2+ transient amplitude and SR Ca2+ content, and reduced RYR2-mediated SCWs in CPVT VMs. These changes were paralleled by restored expression levels of OPA1, a mitochondrial structural protein responsible for tight cristae organization. Our data suggest that enhanced mito-ROS due to matrix-[Ca2+] reduction in CPVT VMs and unexpectedly high IMS-[Ca2+] promotes IMS-calpain–mediated degradation of OPA1, resulting in mitochondrial structural damage that contributes to proarrhythmic remodeling.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Azuma Naito ◽  
Yuki Ashida ◽  
Koichi Himori ◽  
Katsuyuki Tamai ◽  
Iori Kimura ◽  
...  

Preconditioning contractions (PCs) have been shown to markedly improve recovery from force depression after damaging eccentric contractions (ECCs). Here, we examined the mechanism underlying the effects of PCs with special focus on the SH3 and cysteine rich domain 3 (STAC3) that is essential for the transduction of action potential to the Ca2+ release from the sarcoplasmic reticulum. Rat medial gastrocnemius (MG) muscles were removed immediately (REC0), 1 d (REC1), and 4 d (REC4) after exposure to 100 repeated in vivo damaging ECCs. PCs with 10 repeated nondamaging ECCs were applied 2 d before the damaging ECCs. Damaging ECCs induced in vivo isometric torque depression at 50 and 100 Hz stimulation frequencies at REC1 and REC4, which was accompanied by a significant reduction in the amount of STAC3, an activation of calpain 1, and an increased number of Evans Blue dye positive fibers in MG muscles. Importantly, PCs attenuated all these deleterious alterations induced by damaging ECCs. Moreover, mechanistic experiments performed on normal muscle tissue exposed to various concentration of Ca2+ showed a Ca2+-dependent proteolysis of STAC3, which was prevented by calpain inhibitor MDL-28170. In conclusion, PCs improve recovery from force depression after damaging ECCs, presumably by inhibiting the loss of STAC3 due to the increased permeability of cell membrane and subsequent activation of calpain 1.


Physiologia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 22-33
Author(s):  
Shelby C. Osburn ◽  
Christopher G. Vann ◽  
David D. Church ◽  
Arny A. Ferrando ◽  
Michael D. Roberts

Muscle protein synthesis and proteolysis are tightly coupled processes. Given that muscle growth is promoted by increases in net protein balance, it stands to reason that bolstering protein synthesis through amino acids while reducing or inhibiting proteolysis could be a synergistic strategy in enhancing anabolism. However, there is contradictory evidence suggesting that the proper functioning of proteolytic systems in muscle is required for homeostasis. To add clarity to this issue, we sought to determine if inhibiting different proteolytic systems in C2C12 myotubes in conjunction with acute and chronic leucine treatments affected markers of anabolism. In Experiment 1, myotubes underwent 1-h, 6-h, and 24-h treatments with serum and leucine-free DMEM containing the following compounds (n = 6 wells per treatment): (i) DMSO vehicle (CTL), (ii) 2 mM leucine + vehicle (Leu-only), (iii) 2 mM leucine + 40 μM MG132 (20S proteasome inhibitor) (Leu + MG132), (iv) 2 mM leucine + 50 μM calpeptin (calpain inhibitor) (Leu + CALP), and (v) 2 mM leucine + 1 μM 3-methyladenine (autophagy inhibitor) (Leu + 3MA). Protein synthesis levels significantly increased (p < 0.05) in the Leu-only and Leu + 3MA 6-h treatments compared to CTL, and levels were significantly lower in Leu + MG132 and Leu + CALP versus Leu-only and CTL. With 24-h treatments, total protein yield was significantly lower in Leu + MG132 cells versus other treatments. Additionally, the intracellular essential amino acid (EAA) pool was significantly greater in 24-h Leu + MG132 treatments versus other treatments. In a follow-up experiment, myotubes were treated for 48 h with CTL, Leu-only, and Leu + MG132 for morphological assessments. Results indicated Leu + MG132 yielded significantly smaller myotubes compared to CTL and Leu-only. Our data are limited in scope due to the utilization of select proteolysis inhibitors. However, this is the first evidence to suggest proteasome and calpain inhibition with MG132 and CALP, respectively, abrogate leucine-induced protein synthesis in myotubes. Additionally, longer-term Leu + MG132 treatments translated to an atrophy phenotype. Whether or not proteasome inhibition in vivo reduces leucine- or EAA-induced anabolism remains to be determined.


2021 ◽  
Author(s):  
Ying-Jun She ◽  
Hai-Ping Xu ◽  
Yin Gao ◽  
Qiong Wang ◽  
Jun Zheng ◽  
...  

Abstract Background Compelling experimental evidence suggests a risk of neuronal damage following early childhood exposure to anesthesia and sedation drugs, including propofol. We investigated whether the transient receptor potential canonical 6 (TRPC6) channel could protect neonatal rats against developmental neurotoxicity following prolonged exposure to propofol. The potential role of calpain, a neuronal TRPC6 protease, was also investigated. Methods Postnatal day 7 rats were exposed to five bolus injections of 25 mg/kg propofol or 10% intralipid at hourly intervals. Acute neuronal injury was assessed by the expression pattern of terminal deoxynucleotidyl transferase nick-end labeling staining and cleaved–caspase-3 in the prefrontal cortex. The Morris water maze test was used to evaluate learning and memory functions in later life. Pretreatments consisting of intracerebroventricular injections of a TRPC6 agonist, TRPC6 inhibitor, or calpain inhibitor were used to confirm the potential role of a calpain–TRPC6 pathway. Results Prolonged exposure to propofol induced acute neuronal injury, downregulation of TRPC6, and enhancement of calpain activity in the prefrontal cortex up to 24 h after anesthesia. It also induced later behavioral disorders, manifesting as longer escape latency and as fewer platform-crossing times and less time spent in the target quadrant during postnatal days 35–42. These propofol-induced effects were attenuated by TRPC6 agonist and calpain inhibitor while exaggerated by TRPC6 inhibitor. Treatment with calpain inhibitor also attenuated the propofol-induced TRPC6 downregulation in the prefrontal cortex. Conclusions A calpain–TRPC6 signaling pathway contributes to propofol-induced acute neuronal injury and long-term behavioral disorders in neonatal rats.


2021 ◽  
Author(s):  
Chiharu Tabata ◽  
Rie Tabata

Abstract Lung cancer is a leading cause of cancer-related death worldwide, and most are non-small cell lung cancers (NSCLC). Since the overall survival remains very poor for NSCLC patients with advanced-stage disease, the development of novel treatments is needed. Previous studies reported a relationship between calpain and tumorigenesis. In this study, we examined the apoptotic effects of calpeptin (Cal), a calpain inhibitor, on A549 NSCLC cells. We assessed whether Cal induced apoptosis in A549 cells. Cal induced apoptosis in A549 cells and also activated p38MAPK. These results suggest a possible clinical use of Cal for the treatment of NSCLC.


2021 ◽  
Vol 22 (19) ◽  
pp. 10613
Author(s):  
Yulia Baburuna ◽  
Linda Sotnikova ◽  
Olga Krestinina

The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed that upon phosphorylation of proteins in some proteins, the degree of their phosphorylation increases with the opening of mPTP. Two isoforms of myelin basic protein and cyclic nucleotide phosphodiesterase were identified in rat brain non-synaptic mitochondria and it was concluded that they are involved in mPTP regulation. In the present study, using the mass spectrometry method, the phosphorylated protein was identified as Calpain 3 in rat brain non-synaptic mitochondria. In the present study, the phosphoprotein Calpain-3 (p94) (CAPN3) was identified in the rat brain mitochondria as a phosphorylated truncated form of p60–62 kDa by two-dimensional electrophoresis and mass spectrometry. We showed that the calpain inhibitor, calpeptin, was able to suppress the Ca2+ efflux from mitochondria, preventing the opening of mPTP. It was found that phosphorylated truncated CALP3 with a molecular weight of 60–62 contains p-Tyr, which indicates the possible involvement of protein tyrosine phosphatase in this process.


Author(s):  
Yuki Ashida ◽  
Koichi Himori ◽  
Katsuyuki Tamai ◽  
Iori Kimura ◽  
Takashi Yamada

Preconditioning contractions (PCs) have been shown to markedly improve recovery from eccentric contractions (ECCs)-induced force depression. We here examined the mechanism behind the effects of PCs with focusing on the SH3 and cysteine rich domain 3 (STAC3) that is essential for coupling membrane depolarization to Ca2+ release from the sarcoplasmic reticulum. Rat medial gastrocnemius (MG) muscles were excised immediately (REC0), 1 day (REC1), and 4 days (REC4) after exposure to 100 repeated damaging ECCs in vivo. PCs with 10 repeated non-damaging ECCs were applied 2 days before the damaging ECCs. Damaging ECCs induced in vivo isometric torque depression at 50 and 100 Hz stimulation frequencies, which was accompanied by a significant decrease in the amount of full-length STAC3, an activation of calpain 1, and an increased number of Evans Blue dye positive fibers in MG muscles at REC1 and REC4. Interestingly, PCs attenuated all these deleterious alterations induced by damaging ECCs. Moreover, mechanistic experiments performed on normal muscle samples exposed to various concentration of Ca2+ showed a Ca2+-dependent proteolysis of STAC3, which was prevented by calpain inhibitor MDL-28170. In conclusion, PCs may improve recovery from force depression after damaging ECCs, in part by inhibiting the loss of STAC3 due to the increased permeability of cell membrane and subsequent activation of calpain 1.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2592
Author(s):  
Katherine J. Robinson ◽  
Kristy Yuan ◽  
Stuart K. Plenderleith ◽  
Maxinne Watchon ◽  
Angela S. Laird

Spinocerebellar ataxia type 3 (SCA3) is a hereditary ataxia caused by inheritance of a mutated form of the human ATXN3 gene containing an expanded CAG repeat region, encoding a human ataxin-3 protein with a long polyglutamine (polyQ) repeat region. Previous studies have demonstrated that ataxin-3 containing a long polyQ length is highly aggregation prone. Cleavage of the ataxin-3 protein by calpain proteases has been demonstrated to be enhanced in SCA3 models, leading to an increase in the aggregation propensity of the protein. Here, we tested the therapeutic potential of a novel calpain inhibitor BLD-2736 for the treatment of SCA3 by testing its efficacy on a transgenic zebrafish model of SCA3. We found that treatment with BLD-2736 from 1 to 6 days post-fertilisation (dpf) improves the swimming of SCA3 zebrafish larvae and decreases the presence of insoluble protein aggregates. Furthermore, delaying the commencement of treatment with BLD-2736, until a timepoint when protein aggregates were already known to be present in the zebrafish larvae, was still successful at removing enhanced green fluorescent protein (EGFP) fused-ataxin-3 aggregates and improving the zebrafish swimming. Finally, we demonstrate that treatment with BLD-2736 increased the synthesis of LC3II, increasing the activity of the autophagy protein quality control pathway. Together, these findings suggest that BLD-2736 warrants further investigation as a treatment for SCA3 and related neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document