scholarly journals Renormalization of the Commutative Scalar Theory with Harmonic Term to All Orders

2012 ◽  
Vol 14 (8) ◽  
pp. 2025-2043 ◽  
Author(s):  
Axel de Goursac
Keyword(s):  
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Gustavo O. Heymans ◽  
Marcus Benghi Pinto

Abstract We apply the optimized perturbation theory (OPT) to resum the perturbative series describing the mass gap of the bidimensional ϕ4 theory in the ℤ2 symmetric phase. Already at NLO (one loop) the method is capable of generating a quite reasonable non-perturbative result for the critical coupling. At order-g7 we obtain gc = 2.779(25) which compares very well with the state of the art N8LO result, gc = 2.807(34). As a novelty we investigate the supercritical region showing that it contains some useful complimentary information that can be used in extrapolations to arbitrarily high orders.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yan Song ◽  
Tong-Tong Hu ◽  
Yong-Qiang Wang

Abstract We study the model of four-dimensional Einstein-Maxwell-Λ theory minimally coupled to a massive charged self-interacting scalar field, parameterized by the quartic and hexic couplings, labelled by λ and β, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moreover, we investigate the full nonlinear solution with nonzero scalar field included, and argue that these counterexamples can be removed by assuming charged self-interacting scalar field with sufficiently large charge not lower than a certain bound. In particular, this bound on charge required to preserve cosmic censorship is no longer precisely the weak gravity bound for the free scalar theory. For the quartic coupling, for λ < 0 the bound is below the one for the free scalar fields, whereas for λ > 0 it is above. Meanwhile, for the hexic coupling the bound is always above the one for the free scalar fields, irrespective of the sign of β.


2002 ◽  
Vol 80 (8) ◽  
pp. 847-854 ◽  
Author(s):  
C D Palmer ◽  
M E Carrington

The calculation of the symmetry factor corresponding to a given Feynman diagram is well known to be a tedious problem. We have derived a simple formula for these symmetry factors. Our formula works for any diagram in scalar theory (ϕ3 and ϕ4 interactions), spinor QED, scalar QED, or QCD. PACS Nos.: 11.10-z, 11.15-q, 11.15Bt


2014 ◽  
Vol 24 (05) ◽  
pp. 1450075 ◽  
Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, bifurcation trees of periodic motions to chaos in a parametric oscillator with quadratic nonlinearity are investigated analytically as one of the simplest parametric oscillators. The analytical solutions of periodic motions in such a parametric oscillator are determined through the finite Fourier series, and the corresponding stability and bifurcation analyses for periodic motions are completed. Nonlinear behaviors of such periodic motions are characterized through frequency–amplitude curves of each harmonic term in the finite Fourier series solution. From bifurcation analysis of the analytical solutions, the bifurcation trees of periodic motion to chaos are obtained analytically, and numerical illustrations of periodic motions are presented through phase trajectories and analytical spectrum. This investigation shows period-1 motions exist in parametric nonlinear systems and the corresponding bifurcation trees to chaos exist as well.


Sign in / Sign up

Export Citation Format

Share Document