supercritical region
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 12)

H-INDEX

22
(FIVE YEARS 2)

J ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 698-726
Author(s):  
Norio Yoshida ◽  
Masaru Matsugami ◽  
Yuichi Harano ◽  
Keiko Nishikawa ◽  
Fumio Hirata

Water in the supercritical region of the phase diagram exhibits a markedly different structure and properties from that at ambient conditions, which is useful in controlling chemical reactions. Nonetheless, the experimental, as well as theoretical, characterization of the substance is not easy because the region is next to the critical point. This article reviews the experimental as well as theoretical studies on water in the supercritical region and its properties as a solvent for chemical reactions, as carried out by the authors and based on small-angle X-ray scattering and the statistical mechanics theory of molecular liquids, also known as reference interaction-site model (RISM) theory.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Gustavo O. Heymans ◽  
Marcus Benghi Pinto

Abstract We apply the optimized perturbation theory (OPT) to resum the perturbative series describing the mass gap of the bidimensional ϕ4 theory in the ℤ2 symmetric phase. Already at NLO (one loop) the method is capable of generating a quite reasonable non-perturbative result for the critical coupling. At order-g7 we obtain gc = 2.779(25) which compares very well with the state of the art N8LO result, gc = 2.807(34). As a novelty we investigate the supercritical region showing that it contains some useful complimentary information that can be used in extrapolations to arbitrarily high orders.


2020 ◽  
Vol 10 (17) ◽  
pp. 5877
Author(s):  
Sungchan Hong ◽  
Takeshi Asai

Soccer balls have undergone dramatic changes in their surface structure that can affect their aerodynamics. The properties of the soccer ball surface such as the panel shape, panel orientation, seam characteristics, and surface roughness have a significant impact on its aerodynamics and flight trajectory. In this study, we performed wind-tunnel tests to investigate how the introduction of grooves on the surface of a soccer ball affects the flight stability and aerodynamic forces on the ball. Our results show that for soccer balls without grooves, changing the panel orientation of the ball causes a significant change in the drag coefficient. Soccer balls with grooves exhibited a smaller change in air resistance (Cd) in the supercritical region (20 to 30 m/s; 3.0 × 105 ≤ Re ≤ 4.7 × 105), compared to the ungrooved ball where only the panel orientation was changed. Furthermore, at power-shot speeds (25 m/s), the grooved ball exhibited smaller variations in lift force and side force than the ungrooved ball. These results suggest that a long groove structure on the surface of the soccer ball has a significant impact on the air flow around the ball in the supercritical region, and has the effect of keeping the air flow separation line constant.


2020 ◽  
Vol 63 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
LongFei Chen ◽  
Dong Liu ◽  
HanLin Zhang ◽  
Qiang Li

2019 ◽  
Vol 293 ◽  
pp. 111518 ◽  
Author(s):  
I.M. Zerón ◽  
J. Torres-Arenas ◽  
E.N. de Jesús ◽  
B.V. Ramírez ◽  
A.L. Benavides
Keyword(s):  

Author(s):  
Hussain Basha ◽  
G. Janardhana Reddy ◽  
N. S. Venkata Narayanan

Abstract The present paper studies through numerical methods, the thermodynamic heat transfer characteristics of free convection flow of supercritical nitrogen over a vertical cylinder. In the present analysis, the values of volumetric thermal expansion coefficient ($\beta$) are evaluated based on Redlich-Kwong equation of state (RK-EOS) and Van der Waals equation of state (VW-EOS). The calculated analytical thermal expansion coefficient values using RK-EOS are very close to NIST data values in comparison with VW-EOS. A set of coupled nonlinear partial differential equations (PDEs) governing the supercritical fluid (SCF) flow are derived, converted into non-dimensional form with the help of suitable dimensionless quantities and solved using Crank-Nicolson implicit finite difference method. The simulations are carried out for nitrogen in the supercritical region. The obtained numerical data is expressed in terms of graphs and tables for various values of physical parameters. The increasing value of reduced temperature decreases the average Nusselt number and skin-friction coefficient, whereas amplifying value of reduced pressure enhance the heat transfer rate and wall shear stress in the SCF region. Present results are compared with the previous results and the two are found to be in good agreement, i. e. the numerically generated results found to be in agreement with existing results.


Sign in / Sign up

Export Citation Format

Share Document