scholarly journals Algebraic Approach to Bose–Einstein Condensation in Relativistic Quantum Field Theory: Spontaneous Symmetry Breaking and the Goldstone Theorem

Author(s):  
Romeo Brunetti ◽  
Klaus Fredenhagen ◽  
Nicola Pinamonti

AbstractWe construct states describing Bose–Einstein condensates at finite temperature for a relativistic massive complex scalar field with $$|\varphi |^4$$ | φ | 4 -interaction. We start with the linearized theory over a classical condensate and construct interacting fields by perturbation theory. Using the concept of thermal masses, equilibrium states at finite temperature can be constructed by the methods developed in Fredenhagen and Lindner (Commun Math Phys 332:895, 2014) and Drago et al. (Ann Henri Poincaré 18:807, 2017). Here, the principle of perturbative agreement plays a crucial role. The apparent conflict with Goldstone’s theorem is resolved by the fact that the linearized theory breaks the U(1) symmetry; hence, the theorem applies only to the full series but not to the truncations at finite order which therefore can be free of infrared divergences.

2015 ◽  
Vol 30 (07) ◽  
pp. 1550037 ◽  
Author(s):  
Rodolfo Casana ◽  
Kleber A. T. da Silva

We have studied the effects of Lorentz-violation in the Bose–Einstein condensation (BEC) of an ideal boson gas, by assessing both the nonrelativistic and ultrarelativistic limits. Our model describes a massive complex scalar field coupled to a CPT-even and Lorentz-violating background. We first analyze the nonrelativistic case, at this level by using experimental data, we obtain upper-bounds for some LIV parameters. In the sequel, we have constructed the partition function for the relativistic ideal boson gas which to be able of a consistent description requires the imposition of severe restrictions on some LIV coefficients. In both cases, we have demonstrated that the LIV contributions are contained in an overall factor, which multiplies almost all thermodynamical properties. An exception is the fraction of the condensed particles.


2014 ◽  
Vol 29 (02) ◽  
pp. 1430002 ◽  
Author(s):  
TANJA RINDLER-DALLER ◽  
PAUL R. SHAPIRO

The nature of the cosmological dark matter (DM) remains elusive. Recent studies have advocated the possibility that DM could be composed of ultra-light, self-interacting bosons, forming a Bose–Einstein condensate (BEC) in the very early Universe. We consider models which are charged under a global U(1)-symmetry such that the DM number is conserved. It can then be described as a classical complex scalar field which evolves in an expanding Universe. We present a brief review on the bounds on the model parameters from cosmological and galactic observations, along with the properties of galactic halos which result from such a DM candidate.


2015 ◽  
Vol 24 (4) ◽  
pp. 343
Author(s):  
Tran Huu Phat ◽  
Le Viet Hoa ◽  
Dang Thi Minh Hue

The Bose - Einstein condensation of ultra - cold Bose gases is studied by means of the Cornwall - Jackiw - Tomboulis effective potential approach in the improved double - bubble approximation which preserves the Goldstone theorem. The phase structure of Bose - Einstein condensate associating with two different types of phase transition is systematically investigated. Its main feature is that the symmetry which was broken at zero temperature gets restore at higher temperature.


1992 ◽  
Vol 107 (9) ◽  
pp. 1003-1009 ◽  
Author(s):  
You-Gen Shen ◽  
Zhen-Qiang Tan ◽  
Yong-Jiu Wang

Sign in / Sign up

Export Citation Format

Share Document