scholarly journals Phase Structure of Bose - Einstein Condensate in Ultra - Cold Bose Gases

2015 ◽  
Vol 24 (4) ◽  
pp. 343
Author(s):  
Tran Huu Phat ◽  
Le Viet Hoa ◽  
Dang Thi Minh Hue

The Bose - Einstein condensation of ultra - cold Bose gases is studied by means of the Cornwall - Jackiw - Tomboulis effective potential approach in the improved double - bubble approximation which preserves the Goldstone theorem. The phase structure of Bose - Einstein condensate associating with two different types of phase transition is systematically investigated. Its main feature is that the symmetry which was broken at zero temperature gets restore at higher temperature.

2021 ◽  
Vol 2103 (1) ◽  
pp. 012200
Author(s):  
K G Zloshchastiev

Abstract We recall the experimental data of one-dimensional axial propagation of sound near the center of the Bose-Einstein condensate cloud, which used the optical dipole force method of a focused laser beam and rapid sequencing of nondestructive phase-contrast images. We reanalyze these data within the general quantum fluid framework but without model-specific theoretical assumptions; using the standard best fit techniques. We demonstrate that some of their features cannot be explained by means of the perturbative two-body approximation and Gross-Pitaevskii model, and conjecture possible solutions.


1995 ◽  
Vol 50 (10) ◽  
pp. 921-930 ◽  
Author(s):  
Siegfried Grossmann ◽  
Martin Holthaus

Abstract We study Bose-Einstein condensation of comparatively small numbers of atoms trapped by a three-dimensional harmonic oscillator potential. Under the assumption that grand canonical statis­tics applies, we derive analytical expressions for the condensation temperature, the ground state occupation, and the specific heat capacity. For a gas of TV atoms the condensation temperature is proportional to N1/3, apart from a downward shift of order N-1/3. A signature of the condensation is a pronounced peak of the heat capacity. For not too small N the heat capacity is nearly discon­tinuous at the onset of condensation; the magnitude of the jump is about 6.6 N k. Our continuum approximations are derived with the help of the proper density of states which allows us to calculate finite-AT-corrections, and checked against numerical computations.


2004 ◽  
Vol 18 (27n29) ◽  
pp. 3797-3802 ◽  
Author(s):  
S.-R. ERIC YANG ◽  
Q-HAN PARK ◽  
J. YEO

We have studied theoretically the Bose-Einstein condensation (BEC) of two-dimensional excitons in a ring with a random variation of the effective exciton potential along the circumference. We derive a nonlinear Gross-Pitaevkii equation (GPE) for such a condensate, which is valid even in the presence of a weak magnetic field. For several types of the random potentials our numerical solution of the ground state of the GPE displays a necklace-like structure. This is a consequence of the interplay between the random potential and a strong nonlinear repulsive term of the GPE. We have investigated how the mean distance between modulation peaks depends on properties of the random potentials.


2008 ◽  
Vol 17 (10) ◽  
pp. 2150-2154 ◽  
Author(s):  
S. YU. TORILOV ◽  
K. A. GRIDNEV ◽  
W. GREINER

The simple alpha-cluster model was used for the consideration of the chain states and Bose-Einstein condensation in the light self-conjugated nuclei. Obtained results were compared with predictions of the shell-model for the deformed nuclei, with calculations based on Gross-Pitaevskii equation and with recent experimental results.


2003 ◽  
Vol 17 (28) ◽  
pp. 5289-5293
Author(s):  
D. ROUBTSOV ◽  
Y. LÉPINE

We discuss the possibility for a moving droplet of excitons and phonons to form a coherent state inside the packet. We describe such an inhomogeneous state in terms of Bose–Einstein condensation and prescribe it a macroscopic wave function. Existence and, thus, coherency of such a Bose-core inside the droplet can be checked experimentally if two moving packets are allowed to interact.


Particles ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Brent Harrison ◽  
Andre Peshier

We present a novel numerical scheme to solve the QCD Boltzmann equation in the soft scattering approximation, for the quenched limit of QCD. Using this we can readily investigate the evolution of spatially homogeneous systems of gluons distributed isotropically in momentum space. We numerically confirm that for so-called “overpopulated” initial conditions, a (transient) Bose-Einstein condensate could emerge in a finite time. Going beyond existing results, we analyze the formation dynamics of this condensate. The scheme is extended to systems with cylindrically symmetric momentum distributions, in order to investigate the effects of anisotropy. In particular, we compare the rates at which isotropization and equilibration occur. We also compare our results from the soft scattering scheme to the relaxation time approximation.


2016 ◽  
Vol 30 (09) ◽  
pp. 1650131
Author(s):  
Rukuan Wu ◽  
Yu Shi

In this paper, we analytically find the ground states of a mixture of two species of pseudospin-[Formula: see text] Bose gases with interspecies spin exchange in quite generic parameter regimes. In the most interesting phase, the ground state is strongly entangled between the two species in a very wide parameter regime, and is an entangled Bose-Einstein condensate. The phase diagram and elementary excitations are studied.


2012 ◽  
Vol 26 (17) ◽  
pp. 1250096 ◽  
Author(s):  
HÜSEYİN ERTİK ◽  
HÜSEYİN ŞİRİN ◽  
DOǦAN DEMİRHAN ◽  
FEVZİ BÜYÜKKİLİÇ

Although atomic Bose gases are experimentally investigated in the dilute regime, interparticle interactions play an important role on the transition temperatures of Bose–Einstein condensation. In this study, Bose–Einstein condensation is handled using fractional calculus for a Bose gas consisting of interacting bosons which are trapped in a three-dimensional harmonic oscillator. In this frame, in order to introduce the nonextensive effect, fractionally generalized Bose–Einstein distribution function which features Mittag–Leffler function is adopted. The dependence of the transition temperature of Bose–Einstein condensation on α (a measure of fractality of space) has been established. The transition temperatures for the dilute 87 Rb , 23 Na and 7 Li atomic gases have been obtained in consistent with experimental data and the nature of the interactions in the Bose–Einstein condensate has been enlightened. In the course of our investigations, we have arrived to the conclusion that for α < 1 attractive interactions and for α > 1 repulsive interactions are predominant.


Sign in / Sign up

Export Citation Format

Share Document