A Non-Extensive Statistical Physics View in the Spatiotemporal Properties of the 2003 (Mw6.2) Lefkada, Ionian Island Greece, Aftershock Sequence

2013 ◽  
Vol 171 (7) ◽  
pp. 1343-1354 ◽  
Author(s):  
F. Vallianatos ◽  
V. Karakostas ◽  
E. Papadimitriou
Author(s):  
Molly Luginbuhl ◽  
John B. Rundle ◽  
Donald L. Turcotte

A standard approach to quantifying the seismic hazard is the relative intensity (RI) method. It is assumed that the rate of seismicity is constant in time and the rate of occurrence of small earthquakes is extrapolated to large earthquakes using Gutenberg–Richter scaling. We introduce nowcasting to extend RI forecasting to time-dependent seismicity, for example, during an aftershock sequence. Nowcasting uses ‘natural time’; in seismicity natural time is the event count of small earthquakes. The event count for small earthquakes is extrapolated to larger earthquakes using Gutenberg–Richter scaling. We first review the concepts of natural time and nowcasting and then illustrate seismic nowcasting with three examples. We first consider the aftershock sequence of the 2004 Parkfield earthquake on the San Andreas fault in California. Some earthquakes have higher rates of aftershock activity than other earthquakes of the same magnitude. Our approach allows the determination of the rate in real time during the aftershock sequence. We also consider two examples of induced earthquakes. Large injections of waste water from petroleum extraction have generated high rates of induced seismicity in Oklahoma. The extraction of natural gas from the Groningen gas field in The Netherlands has also generated very damaging earthquakes. In order to reduce the seismic activity, rates of injection and withdrawal have been reduced in these two cases. We show how nowcasting can be used to assess the success of these efforts. This article is part of the theme issue ‘Statistical physics of fracture and earthquakes’.


2021 ◽  
Author(s):  
Filippos Vallianatos ◽  
Kyriaki Pavlou

<p>On October 30, 2020 a strong shallow earthquake of magnitude Mw=7.0 occurred on the Eastern edge of Aegean Sea. The epicenter was located on the North offshore of the Greek island of Samos. The aim of our work is to present a first analysis of the scaling properties observed in the aftershock sequence as reported until December 31, 2020, as numerous seismic clusters activated. Our analysis is focused on the main of the clusters observed in the East area of the activated fault zone and strongly related with the main shock’s fault. The aftershock sequence follows the Omori law with a value of p≈1.01 for the main cluster which is remarkably close to a logarithmic evolution. The analysis of interevent times distribution, based on non-extensive statistical physics indicates a system in an anomalous equilibrium with a cross over from anomalous (q>1) to normal (q=1) statistical mechanics, for great interevent times. A discussion of the cross over observed, in terms of superstatistics is given. In addition the obtained value q≈1.67 suggests a system with one degree of freedom. Furthermore, an scaling of the migration of aftershock zone as a function of the logarithm of time is discussed in terms of rate strengthening rheology that govern the evolution of afterslip process.</p><p><strong>References</strong></p><p>Tsallis, C. Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World; Springer: New York, USA, 2009; pp. 1–382.</p><p>Perfettini, H.,Frank, W. B., Marsan, D., and Bouchon, M. (2018). A model of aftershock migration driven by afterslip. Geophys. Res. Let., 45, 2283–2293.</p><p>Vallianatos, F.; Papadakis, G.; Michas, G. (2016). Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A Math. Phys. Eng. Sci. <strong>2016</strong>,472, 20160497</p><p><strong>Acknowledgements</strong></p><p>We acknowledge support of this work by the project “HELPOS – Hellenic System for Lithosphere Monitoring” (MIS 5002697) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).</p>


2020 ◽  
Author(s):  
Malcolm P. Kennett
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document