scholarly journals On the Parity Under Metapletic Operators and an Extension of a Result of Lyubarskii and Nes

2019 ◽  
Vol 75 (1) ◽  
Author(s):  
Markus Faulhuber

AbstractIn this work we show that if the frame property of a Gabor frame with window in Feichtinger’s algebra and a fixed lattice only depends on the parity of the window, then the lattice can be replaced by any other lattice of the same density without losing the frame property. As a byproduct we derive a generalization of a result of Lyubarskii and Nes, who could show that any Gabor system consisting of an odd window function from Feichtinger’s algebra and any separable lattice of density $$\tfrac{n+1}{n}$$n+1n, $$n \in \mathbb {N}_+$$n∈N+, cannot be a Gabor frame for the Hilbert space of square-integrable functions on the real line. We extend this result by removing the assumption that the lattice has to be separable. This is achieved by exploiting the interplay between the symplectic and the metaplectic group.

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1060
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano A. del del Olmo

We introduce a multi-parameter family of bases in the Hilbert space L2(R) that are associated to a set of Hermite functions, which also serve as a basis for L2(R). The Hermite functions are eigenfunctions of the Fourier transform, a property that is, in some sense, shared by these “generalized Hermite functions”. The construction of these new bases is grounded on some symmetry properties of the real line under translations, dilations and reflexions as well as certain properties of the Fourier transform. We show how these generalized Hermite functions are transformed under the unitary representations of a series of groups, including the Weyl–Heisenberg group and some of their extensions.


2019 ◽  
Vol 10 (4) ◽  
pp. 377-394
Author(s):  
Anirudha Poria ◽  
Jitendriya Swain

AbstractLet {\mathbb{H}} be a separable Hilbert space. In this paper, we establish a generalization of Walnut’s representation and Janssen’s representation of the {\mathbb{H}}-valued Gabor frame operator on {\mathbb{H}}-valued weighted amalgam spaces {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}. Also, we show that the frame operator is invertible on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, if the window function is in the Wiener amalgam space {W_{\mathbb{H}}(L^{\infty},L^{1}_{w})}. Further, we obtain the Walnut representation and invertibility of the frame operator corresponding to Gabor superframes and multi-window Gabor frames on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, as a special case by choosing the appropriate Hilbert space {\mathbb{H}}.


1958 ◽  
Vol 10 ◽  
pp. 431-446 ◽  
Author(s):  
Fred Brauer

Let L and M be linear ordinary differential operators defined on an interval I, not necessarily bounded, of the real line. We wish to consider the expansion of arbitrary functions in eigenfunctions of the differential equation Lu = λMu on I. The case where M is the identity operator and L has a self-adjoint realization as an operator in the Hilbert space L 2(I) has been treated in various ways by several authors; an extensive bibliography may be found in (4) or (8).


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Zouhaïr Mouayn

We construct a one-parameter family of coherent states of Barut-Girdrardello type performing a resolution of the identity of the classical Hardy space of complex-valued square integrable functions on the real line, whose Fourier transform is supported by the positive real semiaxis.


1993 ◽  
Vol 45 (6) ◽  
pp. 1167-1183 ◽  
Author(s):  
F. H. Clarke ◽  
R. J. Stern ◽  
P. R. Wolenski

AbstractLet ƒ H → (—∞,∞] be lower semicontinuous, where H is a real Hilbert space. An approach based upon nonsmooth analysis and optimization is used in order to characterize monotonicity of ƒ with respect to a cone, as well as Lipschitz behavior and constancy. The results, which involve hypotheses on the proximal subgradient ∂ πƒ, specialize on the real line to yield classical characterizations of these properties in terms of the Dini derivate. They also give new extensions of these results to the multidimensional case. A new proof of a known characterization of convexity in terms of proximal subgradient monotonicity is also given.


1986 ◽  
Vol 38 (5) ◽  
pp. 1135-1148 ◽  
Author(s):  
G. McDonald ◽  
C. Sundberg

Putnam showed in [5] that the spectrum of the real part of a bounded subnormal operator on a Hilbert space is precisely the projection of the spectrum of the operator onto the real line. (In fact he proved this more generally for bounded hyponormal operators.) We will show that this result can be extended to the class of unbounded subnormal operators with bounded real parts.Before proceeding we establish some notation. If T is a (not necessarily bounded) operator on a Hilbert space, then D(T) will denote its domain, and σ(T) its spectrum. For K a subspace of D(T), T|K will denote the restriction of T to K. Norms of bounded operators and elements in Hilbert spaces will be indicated by ‖ ‖. All Hilbert space inner products will be written 〈,〉. If W is a set in C, the closure of W will be written clos W, the topological boundary will be written bdy W, and the projection of W onto the real line will be written π(W),


Author(s):  
Xirong Chang

The aim of this paper is to extend (ψ, β)-derivatives to [Formula: see text]-derivatives for locally integrable functions on the real line and then investigate problems of approximation of the classes of functions determined by these derivatives with the use of entire functions of exponential type.


1999 ◽  
Vol 51 (11) ◽  
pp. 1749-1763 ◽  
Author(s):  
A. I. Stepanets ◽  
Wang Kunyang ◽  
Zhang Xirong

1982 ◽  
Vol 34 (1) ◽  
pp. 91-168 ◽  
Author(s):  
L. E. Morris

Let G be the Lie group SL(2, R) and Γ a discrete subgroup of arithmetic type. The homogeneous space Γ\G can be equipped with an invariant measure so that there is a Hilbert space of square integrable functions, denoted L2(Γ\G), on which G acts by right translations. If Γ\G is compact then this Hilbert space breaks up into a countable direct sum of irreducible representations of G, each occurring with finite multiplicity. Quite often however Γ\G is not compact, but of finite volume; in this case L2(Γ\G) splits into a discrete spectrum Ld2 which behaves as if Γ\G were compact, and a continuous spectrum Lc2 which is described by the so called theory of Eisenstein series. These are generalized eigenfunctions of the Casimir operator of G, which are parametrized by a right half plane in C, and as such are analytic functions on this half-plane; in the course of describing the continuous spectrum Lc2 however, one analytically continues them to meromorphic functions over all of C, and shows them to satisfy functional equations.


1993 ◽  
Vol 129 ◽  
pp. 23-42 ◽  
Author(s):  
Zhiyuan Huang

Let H = L2 (R) be the Hilbert space of all complex-valued square integrable functions defined on R, Ф = Γ(H) be the Boson Fock space over H. For each h ∈ H, denote by ε(h) the corresponding exponential vector:in particular ε(0) is the Fock vacuum.


Sign in / Sign up

Export Citation Format

Share Document