scholarly journals Complex Shepard Operators and Their Summability

2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Oktay Duman ◽  
Biancamaria Della Vecchia

AbstractIn this paper, we construct the complex Shepard operators to approximate continuous and complex-valued functions on the unit square. We also examine the effects of regular summability methods on the approximation by these operators. Some applications verifying our results are provided. To illustrate the approximation theorems graphically we consider the real or imaginary part of the complex function being approximated and also use the contour lines of the modulus of the function.

1981 ◽  
Vol 33 (1) ◽  
pp. 181-200 ◽  
Author(s):  
S. H. Kulkarni ◽  
B. V. Limaye

Although the theory of complex Banach algebras is by now classical, the first systematic exposition of the theory of real Banach algebras was given by Ingelstam [5] as late as 1965. More recently, further attention to real Banach algebras was paid in 1970 [1], where, among other things, the (real) standard algebras on finite open Klein surfaces were introduced. Generalizing these considerations, real uniform algebras were studied in [7] and [6].In the present paper, an attempt is made to develop the theory of real function algebras (see Section 1 for the definition) along the lines of the complex function algebras. Although the real function algebras are not structurally different from the real uniform algebras introduced in [7], they are easier to deal with since their elements are actually (complex-valued) functions.


Information ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 5 ◽  
Author(s):  
Liu ◽  
Mahmood ◽  
Ali

In this manuscript, the notions of q-rung orthopair fuzzy sets (q-ROFSs) and complex fuzzy sets (CFSs) are combined is to propose the complex q-rung orthopair fuzzy sets (Cq-ROFSs) and their fundamental laws. The Cq-ROFSs are an important way to express uncertain information, and they are superior to the complex intuitionistic fuzzy sets and the complex Pythagorean fuzzy sets. Their eminent characteristic is that the sum of the qth power of the real part (similarly for imaginary part) of complex-valued membership degree and the qth power of the real part (similarly for imaginary part) of complex-valued non‐membership degree is equal to or less than 1, so the space of uncertain information they can describe is broader. Under these environments, we develop the score function, accuracy function and comparison method for two Cq-ROFNs. Based on Cq-ROFSs, some new aggregation operators are called complex q-rung orthopair fuzzy weighted averaging (Cq-ROFWA) and complex q-rung orthopair fuzzy weighted geometric (Cq-ROFWG) operators are investigated, and their properties are described. Further, based on proposed operators, we present a new method to deal with the multi‐attribute group decision making (MAGDM) problems under the environment of fuzzy set theory. Finally, we use some practical examples to illustrate the validity and superiority of the proposed method by comparing with other existing methods.


Geophysics ◽  
2021 ◽  
pp. 1-53
Author(s):  
Jiangtao Hu ◽  
Jianliang Qian ◽  
Jian Song ◽  
Min Ouyang ◽  
Junxing Cao ◽  
...  

Seismic waves in earth media usually undergo attenuation, causing energy losses and phase distortions. In the regime of high-frequency asymptotics, a complex-valued eikonal is an essential ingredient for describing wave propagation in attenuating media, where the real and imaginary parts of the eikonal function capture dispersion effects and amplitude attenuation of seismic waves, respectively. Conventionally, such a complex-valued eikonal is mainly computed either by tracing rays exactly in complex space or by tracing rays approximately in real space so that the resulting eikonal is distributed irregularly in real space. However, seismic data processing methods, such as prestack depth migration and tomography, usually require uniformly distributed complex-valued eikonals. Therefore, we propose a unified framework to Eulerianize several popular approximate real-space ray-tracing methods for complex-valued eikonals so that the real and imaginary parts of the eikonal function satisfy the classical real-space eikonal equation and a novel real-space advection equation, respectively, and we dub the resulting method the Eulerian partial-differential-equation method. We further develop highly efficient high-order methods to solve these two equations by using the factorization idea and the Lax-Friedrichs weighted essentially non-oscillatory (WENO) schemes. Numerical examples demonstrate that the proposed method yields highly accurate complex-valued eikonals, analogous to those from ray-tracing methods. The proposed methods can be useful for migration and tomography in attenuating media.


1935 ◽  
Vol 31 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Norman Levinson

1. A set of functions {øn (x)} is said to be closed L over an interval (a, b) if for an f (x) belonging to Limplies that f(x) = 0 almost everywhere. Here f(x) is a complex valued function of the real variable x.


2014 ◽  
Vol 651-653 ◽  
pp. 2164-2167
Author(s):  
Hang Zhang ◽  
Xiao Jun Tong

Many methods of constructing S-box often adopt the classical chaotic equations. Yet study found that some of the chaotic equations exists drawbacks. Based on that, this paper proposed a new method to generate S-Box by improving the Logistic map and Henon map, and combining the real and imaginary part of complex produced by the Mandelbrot set. By comparing with several other S-boxes proposed previously, the results show the S-box here has better cryptographic properties. So it has a good application prospect in block ciphers.


1999 ◽  
Vol 14 (04) ◽  
pp. 257-266
Author(s):  
KRISHNENDU MUKHERJEE

We investigate the two-loop gap equation for the thermal mass of hot massless g2ϕ4 theory and find that the gap equation itself has a nonzero finite imaginary part. This implies that it is not possible to find the real thermal mass as a solution of the gap equation beyond g2 order in perturbation theory. We have solved the gap equation and obtained the real and imaginary parts of the thermal mass which are correct up to g4 order in perturbation theory.


Author(s):  
ZHAOKUI LI ◽  
LIXIN DING ◽  
YAN WANG ◽  
JINRONG HE

This paper proposes a simple, yet very powerful local face representation, called the Gradient Orientations and Euler Mapping (GOEM). GOEM consists of two stages: gradient orientations and Euler mapping. In the first stage, we calculate gradient orientations of a central pixel and get the corresponding orientation representations by performing convolution operator. These representation results display spatial locality and orientation properties. To encompass different spatial localities and orientations, we concatenate all these representation results and derive a concatenated orientation feature vector. In the second stage, we define an explicit Euler mapping which maps the space of the concatenated orientation into a complex space. For a mapping image, we find that the imaginary part and the real part characterize the high frequency and the low frequency components, respectively. To encompass different frequencies, we concatenate the imaginary part and the real part and derive a concatenated mapping feature vector. For a given image, we use the two stages to construct a GOEM image and derive an augmented feature vector which resides in a space of very high dimensionality. In order to derive low-dimensional feature vector, we present a class of GOEM-based kernel subspace learning methods for face recognition. These methods, which are robust to changes in occlusion and illumination, apply the kernel subspace learning model with explicit Euler mapping to an augmented feature vector derived from the GOEM representation of face images. Experimental results show that our methods significantly outperform popular methods and achieve state-of-the-art performance for difficult problems such as illumination and occlusion-robust face recognition.


2015 ◽  
Vol 6 ◽  
pp. 845-856 ◽  
Author(s):  
Jana Vlachová ◽  
Rebekka König ◽  
Diethelm Johannsmann

The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0–20 nm). The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM), where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate) (PMMA). The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR) model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model. This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor), which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting (i.e., a transport of shear stress across many small contacts, rather than a few large ones) can be exploited to reduce partial slip.


2009 ◽  
Vol 17 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Lebesgue's Convergence Theorem of Complex-Valued Function In this article, we formalized Lebesgue's Convergence theorem of complex-valued function. We proved Lebesgue's Convergence Theorem of realvalued function using the theorem of extensional real-valued function. Then applying the former theorem to real part and imaginary part of complex-valued functional sequences, we proved Lebesgue's Convergence Theorem of complex-valued function. We also defined partial sums of real-valued functional sequences and complex-valued functional sequences and showed their properties. In addition, we proved properties of complex-valued simple functions.


Sign in / Sign up

Export Citation Format

Share Document