FACE REPRESENTATION WITH GRADIENT ORIENTATIONS AND EULER MAPPING: APPLICATION TO FACE RECOGNITION

Author(s):  
ZHAOKUI LI ◽  
LIXIN DING ◽  
YAN WANG ◽  
JINRONG HE

This paper proposes a simple, yet very powerful local face representation, called the Gradient Orientations and Euler Mapping (GOEM). GOEM consists of two stages: gradient orientations and Euler mapping. In the first stage, we calculate gradient orientations of a central pixel and get the corresponding orientation representations by performing convolution operator. These representation results display spatial locality and orientation properties. To encompass different spatial localities and orientations, we concatenate all these representation results and derive a concatenated orientation feature vector. In the second stage, we define an explicit Euler mapping which maps the space of the concatenated orientation into a complex space. For a mapping image, we find that the imaginary part and the real part characterize the high frequency and the low frequency components, respectively. To encompass different frequencies, we concatenate the imaginary part and the real part and derive a concatenated mapping feature vector. For a given image, we use the two stages to construct a GOEM image and derive an augmented feature vector which resides in a space of very high dimensionality. In order to derive low-dimensional feature vector, we present a class of GOEM-based kernel subspace learning methods for face recognition. These methods, which are robust to changes in occlusion and illumination, apply the kernel subspace learning model with explicit Euler mapping to an augmented feature vector derived from the GOEM representation of face images. Experimental results show that our methods significantly outperform popular methods and achieve state-of-the-art performance for difficult problems such as illumination and occlusion-robust face recognition.

2014 ◽  
Vol 945-949 ◽  
pp. 1801-1804
Author(s):  
Zhao Kui Li

In this paper, a robust face representation method based on multiple gradient orientations for face recognition is proposed. We introduce multiple gradient orientations and compute multiple orientation images which display different spatial locality and orientation properties. Each orientation image is normalized using the “z-score” method, and all normalized vectors are concatenated into an augmented feature vector. The dimensionality of the augmented feature vector is reduced by linear discriminant analysis to yield a low-dimensional feature vector. Experimental results show that our method achieves state-of-the-art performance for difficult problems such as illumination and occlusion-robust face recognition.


2006 ◽  
Vol 03 (01) ◽  
pp. 45-51
Author(s):  
YANWEI PANG ◽  
ZHENGKAI LIU ◽  
YUEFANG SUN

Subspace-based face recognition method aims to find a low-dimensional subspace of face appearance embedded in a high-dimensional image space. The differences between different methods lie in their different motivations and objective functions. The objective function of the proposed method is formed by combining the ideas of linear Laplacian eigenmaps and linear discriminant analysis. The actual computation of the subspace reduces to a maximum eigenvalue problem. Major advantage of the proposed method over traditional methods is that it utilizes both local manifold structure information and discriminant information of the training data. Experimental results on the AR face databases demonstrate the effectiveness of the proposed method.


Author(s):  
Dattatray V. Jadhav ◽  
V. Jadhav Dattatray ◽  
Raghunath S. Holambe ◽  
S. Holambe Raghunath

Various changes in illumination, expression, viewpoint, and plane rotation present challenges to face recognition. Low dimensional feature representation with enhanced discrimination power is of paramount importance to face recognition system. This chapter presents transform based techniques for extraction of efficient and effective features to solve some of the challenges in face recognition. The techniques are based on the combination of Radon transform, Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT). The property of Radon transform to enhance the low frequency components, which are useful for face recognition, has been exploited to derive the effective facial features. The comparative study of various transform based techniques under different conditions like varying illumination, changing facial expressions, and in-plane rotation is presented in this chapter. The experimental results using FERET, ORL, and Yale databases are also presented in the chapter.


2014 ◽  
Vol 989-994 ◽  
pp. 4205-4208
Author(s):  
Yan Wang ◽  
Zhao Kui Li

In order to obtain more robust face recognition results, the paper proposes an image preprocessing method based on average gradient angle (AGA). It is based on the fact that the central pixel and its neighbors are similar in the local window of an image. AGA firstly calculates the ratio between the relative intensity differences of a current pixel against its neighbors and the number of its neighbors, then employs the arctangent function on the ratio. The dimensionality of the AGA image is reduced by linear discriminant analysis to yield a low-dimensional feature vector. Experimental results show that the proposed method achieves more robust results in comparison with state-of-the-art methods in AR face database.


2019 ◽  
Vol 8 (2) ◽  
pp. 541-550
Author(s):  
Raja Abdullah Raja Ahmad ◽  
Muhammad Imran Ahmad ◽  
Mohd Nazrin Md Isa ◽  
Said Amirul Anwar

Face recognition is a challenge due to facial expression, direction, light, and scale variations. The system requires a suitable algorithm to perform recognition task in order to reduce the system complexity. This paper focuses on a development of a new local feature extraction in frequency domain to reduce dimension of feature space. In the propose method, assemble of DCT coefficients are used to extract important features and reduces the features vector. PCA is performed to further reduce feature dimension by using linear projection of original image. The proposed of assemble low frequency coefficients and features reduction method is able to increase discriminant power in low dimensional feature space. The classification is performed by using the Euclidean distance score between the projection of test and train images. The algorithm is implemented on DSP processor which has the same performance as PC based. The experiment is conducted using ORL standard face databases the best performance achieved by this method is 100%. The execution time to recognize 40 peoples is 0.3313 second when tested using DSP processor. The proposed method has a high degree of recognition accuracy and fast computational time when implemented in embedded platform such as DSP processor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunjun Nam ◽  
Takayuki Sato ◽  
Go Uchida ◽  
Ekaterina Malakhova ◽  
Shimon Ullman ◽  
...  

AbstractHumans recognize individual faces regardless of variation in the facial view. The view-tuned face neurons in the inferior temporal (IT) cortex are regarded as the neural substrate for view-invariant face recognition. This study approximated visual features encoded by these neurons as combinations of local orientations and colors, originated from natural image fragments. The resultant features reproduced the preference of these neurons to particular facial views. We also found that faces of one identity were separable from the faces of other identities in a space where each axis represented one of these features. These results suggested that view-invariant face representation was established by combining view sensitive visual features. The face representation with these features suggested that, with respect to view-invariant face representation, the seemingly complex and deeply layered ventral visual pathway can be approximated via a shallow network, comprised of layers of low-level processing for local orientations and colors (V1/V2-level) and the layers which detect particular sets of low-level elements derived from natural image fragments (IT-level).


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ziqiang Wang ◽  
Xia Sun ◽  
Lijun Sun ◽  
Yuchun Huang

In many image classification applications, it is common to extract multiple visual features from different views to describe an image. Since different visual features have their own specific statistical properties and discriminative powers for image classification, the conventional solution for multiple view data is to concatenate these feature vectors as a new feature vector. However, this simple concatenation strategy not only ignores the complementary nature of different views, but also ends up with “curse of dimensionality.” To address this problem, we propose a novel multiview subspace learning algorithm in this paper, named multiview discriminative geometry preserving projection (MDGPP) for feature extraction and classification. MDGPP can not only preserve the intraclass geometry and interclass discrimination information under a single view, but also explore the complementary property of different views to obtain a low-dimensional optimal consensus embedding by using an alternating-optimization-based iterative algorithm. Experimental results on face recognition and facial expression recognition demonstrate the effectiveness of the proposed algorithm.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Xingcheng Li ◽  
Shuangbiao Zhang

To solve the real-time problem of attitude algorithm for high dynamic bodies, a real-time structure of attitude algorithm is developed by analyzing the conventional structure that has two stages, and a flow diagram of a real-time structure for a Matlab program is provided in detail. During the update of the attitude matrix, the real-time structure saves every element of attitude matrix in minor loop in real time and updates the next attitude matrix based on the previous matrix every subsample time. Thus, the real-time structure avoids lowering updating frequency, though the multisubsample algorithms are used. Simulation and analysis show that the real-time structure of attitude algorithm is better than the conventional structure due to short update time of attitude matrix and small drifting error, and it is more appropriate for high dynamic bodies.


Author(s):  
Andrew J Majda ◽  
Christian Franzke ◽  
Boualem Khouider

Systematic strategies from applied mathematics for stochastic modelling in climate are reviewed here. One of the topics discussed is the stochastic modelling of mid-latitude low-frequency variability through a few teleconnection patterns, including the central role and physical mechanisms responsible for multiplicative noise. A new low-dimensional stochastic model is developed here, which mimics key features of atmospheric general circulation models, to test the fidelity of stochastic mode reduction procedures. The second topic discussed here is the systematic design of stochastic lattice models to capture irregular and highly intermittent features that are not resolved by a deterministic parametrization. A recent applied mathematics design principle for stochastic column modelling with intermittency is illustrated in an idealized setting for deep tropical convection; the practical effect of this stochastic model in both slowing down convectively coupled waves and increasing their fluctuations is presented here.


Sign in / Sign up

Export Citation Format

Share Document