scholarly journals Strictly elliptic operators with Dirichlet boundary conditions on spaces of continuous functions on manifolds

2019 ◽  
Vol 20 (3) ◽  
pp. 1005-1028 ◽  
Author(s):  
Tim Binz
2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Xichao Sun ◽  
Junfeng Liu

We consider a class of stochastic fractional equations driven by fractional noise ont,x∈0,T×0,1  ∂u/∂t=Dδαu+ft,x,u+∂2BHt,x/∂t ∂x, with Dirichlet boundary conditions. We formally replace the random perturbation by a family of sequences based on Kac-Stroock processes in the plane, which approximate the fractional noise in some sense. Under some conditions, we show that the real-valued mild solution of the stochastic fractional heat equation perturbed by this family of noises converges in law, in the space𝒞0,T×0,1of continuous functions, to the solution of the stochastic fractional heat equation driven by fractional noise.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud

Sign in / Sign up

Export Citation Format

Share Document