Sparse Dual Frames and Dual Gabor Functions of Minimal Time and Frequency Supports

2012 ◽  
Vol 19 (1) ◽  
pp. 48-76 ◽  
Author(s):  
Shidong Li ◽  
Yulong Liu ◽  
Tiebin Mi
2017 ◽  
Vol 28 (01) ◽  
pp. 1750001 ◽  
Author(s):  
José R. A. Torreão

The signal-tuned Gabor approach is based on spatial or spectral Gabor functions whose parameters are determined, respectively, by the Fourier and inverse Fourier transforms of a given “tuning” signal. The sets of spatial and spectral signal-tuned functions, for all possible frequencies and positions, yield exact representations of the tuning signal. Moreover, such functions can be used as kernels for space-frequency transforms which are tuned to the specific features of their inputs, thus allowing analysis with high conjoint spatio-spectral resolution. Based on the signal-tuned Gabor functions and the associated transforms, a plausible model for the receptive fields and responses of cells in the primary visual cortex has been proposed. Here, we present a generalization of the signal-tuned Gabor approach which extends it to the representation and analysis of the tuning signal’s fractional Fourier transform of any order. This significantly broadens the scope and the potential applications of the approach.


2006 ◽  
Vol 84 (8) ◽  
pp. 1129-1137 ◽  
Author(s):  
I.R. Caldwell ◽  
V.O. Nams

Orientation mechanisms allow animals to spend minimal time in hostile areas while reaching needed resources. Identification of the specific mechanism used by an animal can be difficult, but examining an animal's path in familiar and unfamiliar areas can provide clues to the type of mechanism in use. Semiaquatic turtles are known to use a homing mechanism in familiar territory to locate their home lake while on land, but little is known about their ability to locate habitat in unfamiliar territory. We tested the tortuosity and orientation of 60 eastern painted turtles ( Chrysemys picta picta (Schneider, 1783)). We released turtles at 20 release points located at five distances and in two directions from two unfamiliar lakes. Turtle trails were quite straight (fractal dimension between 1.1 and 1.025) but were not oriented towards water from any distance (V-test; u < 0.72; P > 0.1). Turtles maintained their initially chosen direction but either could not detect water or were not motivated to reach it. Furthermore, paths were straighter at larger spatial scales than at smaller spatial scales, which could not have occurred if the turtles had been using a correlated random walk. Turtles must therefore be using a reference stimulus for navigation even in unfamiliar areas.


Sign in / Sign up

Export Citation Format

Share Document