Molecular docking simulations and GRID-independent molecular descriptor (GRIND) analysis to probe stereoselective interactions of CYP3A4 inhibitors

2017 ◽  
Vol 26 (10) ◽  
pp. 2322-2335 ◽  
Author(s):  
Sadia Mukhtar ◽  
Yusra Sajid Kiani ◽  
Ishrat Jabeen
2014 ◽  
Vol 14 (12) ◽  
pp. 1469-1472 ◽  
Author(s):  
F. Senol ◽  
M. Khan ◽  
Gurdal Orhan ◽  
Erdem Gurkas ◽  
Ilkay Orhan ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 303-310
Author(s):  
Lili Jiang ◽  
Zhongmin Zhang ◽  
Zhen Wang ◽  
Yong Liu

Abstract Numerous inhibitors of tyrosine-protein kinase KIT, a receptor tyrosine kinase, have been explored as a viable therapy for the treatment of gastrointestinal stromal tumor (GIST). However, drug resistance due to acquired mutations in KIT makes these drugs almost useless. The present study was designed to screen the novel inhibitors against the activity of the KIT mutants through pharmacophore modeling and molecular docking. The best two pharmacophore models were established using the KIT mutants’ crystal complexes and were used to screen the new compounds with possible KIT inhibitory activity against both activation loop and ATP-binding mutants. As a result, two compounds were identified as potential candidates from the virtual screening, which satisfied the potential binding capabilities, molecular modeling characteristics, and predicted absorption, distribution, metabolism, excretion, toxicity (ADMET) properties. Further molecular docking simulations showed that two compounds made strong hydrogen bond interaction with different KIT mutant proteins. Our results indicated that pharmacophore models based on the receptor–ligand complex had excellent ability to screen KIT inhibitors, and two compounds may have the potential to develop further as the future KIT inhibitors for GIST treatment.


ChemPlusChem ◽  
2021 ◽  
Author(s):  
Margarita Suárez ◽  
Kamil Makowski ◽  
Reinier Lemos ◽  
Luis Almagro ◽  
Hortensia Rodríguez ◽  
...  

Author(s):  
Nelson J. F. da Silveira ◽  
Felipe Siconha S. Pereira ◽  
Thiago C. Elias ◽  
Tiago Henrique

2019 ◽  
Author(s):  
Edward A. Valera-Vera ◽  
Melisa Sayé ◽  
Chantal Reigada ◽  
Mariana R. Miranda ◽  
Claudio A. Pereira

AbstractEnolase is a glycolytic enzyme that catalyzes the interconversion between 2-phosphoglycerate and phosphoenolpyruvate. In trypanosomatids enolase was proposed as a key enzyme afterin silicoandin vivoanalysis and it was validated as a protein essential for the survival of the parasite. Therefore, enolase constitutes an interesting enzyme target for the identification of drugs against Chagas disease. In this work, a combined virtual screening strategy was implemented, employing similarity virtual screening, molecular docking and molecular dynamics. First, two known enolase inhibitors and the enzyme substrates were used as queries for the similarity screening on the Sweetlead database using five different algorithms. Compounds retrieved in the top 10 of at least three search algorithms were selected for further analysis, resulting in six compounds of medical use (etidronate, pamidronate, fosfomycin, acetohydroximate, triclofos, and aminohydroxybutyrate). Molecular docking simulations predicted acetohydroxamate and triclofos would not bind to the active site of the enzyme, and a re-scoring of the obtained poses signaled fosfomycin and aminohydroxybutyrate as bad enzyme binders. Docking poses obtained for etidronate, pamidronate, and PEP, were used for molecular dynamics calculations to describe their mode of binding. From the obtained results, we propose etidronate as a possibleTcENO inhibitor, and describe desirable and undesirable molecular motifs to be taken into account in the repurposing or design of drugs aiming this enzyme active site.


2020 ◽  
Author(s):  
Sharon Scott ◽  
Christopher Hadad ◽  
Joseph Fernandez ◽  
Allison MacKay

Author(s):  
Riska Prasetiawati ◽  
Meilia Suherman ◽  
Benny Permana ◽  
Rahmawati Rahmawati

It is presumed that antiproliferative activity of anthocyanidin has interaction with Epidermal Growth Factor Receptor (EGFR) which has effect on lung cancer cell growth. This study aimed to observe the interaction between anthocyanidin and EGFR and to find out prediction, absorption, distribution activities as well as anthocyanidin toxicity compared to Gefitinib, an EGFR inhibitor. All test compounds were optimized with Autodock Tools®, then molecular docking simulations and predictions of absorption, distribution and toxicity were carried out. Malvidin was stated to meet the Lipinski's Rule of Five, indicating good bioavailability. Result of molecular docking simulation showed that malvidin had better affinity against EGFR than Gefitinib. Molecular docking visualization result showed that malvidin had interaction with amino acid residue such as Met793, Gln791, Leu718, Thr854, Asp855 and Lys745. Absorption and distribution predictions included percentage scores of Human Intestinal Absorption (HIA), human colon adenocarcinoma (Caco-2), and Plasma Protein Binding. Toxicity test revealed that malvidin was mutagenic compound but not carcinogenic one. The findings indicated that malvidin was potential to be an anti lung cancer candidate through EGFR inhibition.Keywords: Antiproliferative, Anthocyanidin, Epidermal Growth Factor Receptor, Molecular Docking


Sign in / Sign up

Export Citation Format

Share Document