De novo computational design of compounds virtually displaying potent antibacterial activity and desirable in vitro ADMET profiles

2017 ◽  
Vol 26 (10) ◽  
pp. 2345-2356 ◽  
Author(s):  
Alejandro Speck-Planche ◽  
M. Natália D. S. Cordeiro
Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. 705-709 ◽  
Author(s):  
Hao Shen ◽  
Jorge A. Fallas ◽  
Eric Lynch ◽  
William Sheffler ◽  
Bradley Parry ◽  
...  

We describe a general computational approach to designing self-assembling helical filaments from monomeric proteins and use this approach to design proteins that assemble into micrometer-scale filaments with a wide range of geometries in vivo and in vitro. Cryo–electron microscopy structures of six designs are close to the computational design models. The filament building blocks are idealized repeat proteins, and thus the diameter of the filaments can be systematically tuned by varying the number of repeat units. The assembly and disassembly of the filaments can be controlled by engineered anchor and capping units built from monomers lacking one of the interaction surfaces. The ability to generate dynamic, highly ordered structures that span micrometers from protein monomers opens up possibilities for the fabrication of new multiscale metamaterials.


Science ◽  
2019 ◽  
Vol 366 (6468) ◽  
pp. 1024-1028 ◽  
Author(s):  
Anum A. Glasgow ◽  
Yao-Ming Huang ◽  
Daniel J. Mandell ◽  
Michael Thompson ◽  
Ryan Ritterson ◽  
...  

Sensing and responding to signals is a fundamental ability of living systems, but despite substantial progress in the computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here, we describe a generalizable computational strategy for designing sensor-actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation through split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds. The sensors are functional in vitro and in cells, and the crystal structure of the engineered binding site closely matches the design model. Our computational design strategy opens broad avenues to link biological outputs to new signals.


Author(s):  
Thomas W. Linsky ◽  
Renan Vergara ◽  
Nuria Codina ◽  
Jorgen W. Nelson ◽  
Matthew J. Walker ◽  
...  

AbstractThere is an urgent need for the ability to rapidly develop effective countermeasures for emerging biological threats, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a generalized computational design strategy to rapidly engineer de novo proteins that precisely recapitulate the protein surface targeted by biological agents, like viruses, to gain entry into cells. The designed proteins act as decoys that block cellular entry and aim to be resilient to viral mutational escape. Using our novel platform, in less than ten weeks, we engineered, validated, and optimized de novo protein decoys of human angiotensin-converting enzyme 2 (hACE2), the membrane-associated protein that SARS-CoV-2 exploits to infect cells. Our optimized designs are hyperstable de novo proteins (∼18-37 kDa), have high affinity for the SARS-CoV-2 receptor binding domain (RBD) and can potently inhibit the virus infection and replication in vitro. Future refinements to our strategy can enable the rapid development of other therapeutic de novo protein decoys, not limited to neutralizing viruses, but to combat any agent that explicitly interacts with cell surface proteins to cause disease.


2021 ◽  
Author(s):  
Mauricio Aguilar Rangel ◽  
Alice Bedwell ◽  
Elisa Costanzi ◽  
Stefano Ricagno ◽  
Judith Frydman ◽  
...  

De novo design methods hold the promise of reducing the time and cost of antibody discovery, while enabling the facile and precise targeting of specific epitopes. Here we describe a fragment-based method for the combinatorial design of antibody binding loops and their grafting onto antibody scaffolds. We designed and tested six single-domain antibodies targeting different epitopes on three antigens, including the receptor-binding domain of the SARS-CoV-2 spike protein. Biophysical characterisation showed that all designs are highly stable, and bind their intended targets with affinities in the nanomolar range without any in vitro affinity maturation. We further show that a high-resolution input antigen structure is not required, as our method yields similar predictions when the input is a crystal structure or a computer-generated model. This computational procedure, which readily runs on a laptop, provides the starting point for the rapid generation of lead antibodies binding to pre-selected epitopes.


2019 ◽  
Author(s):  
Anum A. Glasgow ◽  
Yao-Ming Huang ◽  
Daniel J. Mandell ◽  
Michael Thompson ◽  
Ryan Ritterson ◽  
...  

ABSTRACTSensing and responding to signals is a fundamental ability of living systems, but despite remarkable progress in computational design of new protein structures, there is no general approach for engineering arbitrary new protein sensors. Here we describe a generalizable computational strategy for designing sensor/actuator proteins by building binding sites de novo into heterodimeric protein-protein interfaces and coupling ligand sensing to modular actuation via split reporters. Using this approach, we designed protein sensors that respond to farnesyl pyrophosphate, a metabolic intermediate in the production of valuable compounds. The sensors are functional in vitro and in cells, and the crystal structure of the engineered binding site matches the design model with atomic accuracy. Our computational design strategy opens broad avenues to link biological outputs to new signals.One Sentence SummaryAn engineering strategy to design modular synthetic signaling systems that respond to new small molecule inputs.


1969 ◽  
Vol 08 (02) ◽  
pp. 196-206 ◽  
Author(s):  
Dieter. Kummer
Keyword(s):  

ZusammenfassungIn nahezu glucosefreier Suspension von Ehrlich-Ascitescarcinomzellen bewirkt die Zufuhr von Glucose 2,5 × 10–4 bis 10–2 M:1. Hemmung der [14C] Thymidin-Einbaurate in die Zellen.2. Aktivierung des Ribonucleotid-Reductase-Systems und damit Stimulierung der Desoxyribonucleotidsynthese (auch der Thymidintriphosphat-de-novo-Synthese).3. Blockierung der Thymidinkinase über Endprodukthemmung, wodurch die Minderung des [14C] Thymidin-Einbaus in die Zellen erklärbar ist.


Author(s):  
Hams H. H. Alfattli ◽  
Ghufran Zuhair Jiber ◽  
Ghaidaa Gatea Abbass

This study which designed to evaluate the inhibitory effect of Ethanolic extract of (Quercusrobur) and Zinc oxide nanoparticles on the growth of one genus of enterobacteriacae (Salmonella). In vitro. For this purpose graduate concentrates for plant extract (50, 100, 200, 400 )mg/ml which prepared and compared with Zinc oxide nanoparticles of different concentration (2, 1, 0.5, 0.25) μg/ml,and examined. The result showed that the studied medicinal plant has antibacterial activity against this bacteria which used. The result showed that the plant has good activity in decrease the growth of this bacteria. The results of the study also showed that the nano-ZnO has very effective antibacterial action against the studied bacteria which was Salmonella,nanoparticles concentrations lead to increasing in the inhibition zones of tested bacterial growth. We also study the effect of three antibiotics Lomefloxacin (LOM), Ciprofloxacin (SIP) and Rifampin (RA) and the result showed,in a comparison within the tested bacteria,Salmonella had a significant inhibition increase in Lomefloxacin ; the ciprofloxacin showed effect on tested bacteria. However,Rifampin does not show any effect on tested bacteria.


Author(s):  
Альбина Шамсуновна Ахметова ◽  
Альфия Ануровна Зарипова
Keyword(s):  

Показана возможность эффективного применения метода культуры тканей для размножения Allium neriniflorum (Herb.) Backer. Исследуемый вид является декоративным растением, размножение которого затруднено из-за низкой всхожести семян и ослабленной способности к формированию дочерних луковиц. Разработана технология клонального микроразмножения из стерильных луковиц. В качестве исходного материала использовали семена A. neriniflorum. Подобраны условия стерилизации, позволяющие достичь максимального числа (75 %) жизнеспособных эксплантов. Поверхностную стерилизацию проводили в ламинар-боксе с использованием в качестве стерилизующего агента 0,1 % раствор диацида. Семена сначала обрабатывали 70 % этанолом, затем стерилизующим раствором. Экспозиция стерилизующих растворов составляла от 5 до 9 мин. Показано, что способность к индуцированному морфогенезу существенно зависит от состава питательной среды. Максимальное число луковиц образовывалось на среде QL — 9 шт./эксплант. Исследуемые виды обладали высокой способностью к мультипликации и формированию полноценных растений при подобранных условиях культивирования in vitro. Выявленная морфогенетическая активность зачаточного побега, сегментов чешуй и донца стерильной луковицы A. neriniflorum, проявляющаяся в способности регенерировать побеги de novo, что возможно только в культуре in vitro, обеспечивает формирование полноценных луковиц. Луковицы, полученные in vitro, включали в последующие циклы микроразмножения. Культура тканей и органов in vitro позволяет размножать A. neriniflorum с более высоким коэффициентом размножения. От одной стерильной луковицы можно получить до 7000 луковиц в год. При традиционном вегетативном способе размножения материнская луковица формирует 1, редко 2 дочерние луковицы.


Sign in / Sign up

Export Citation Format

Share Document