scholarly journals Changes in chemical cues of Melissococcus plutonius infected honey bee larvae

Chemoecology ◽  
2021 ◽  
Author(s):  
Elisa Kathe ◽  
Karsten Seidelmann ◽  
Oleg Lewkowski ◽  
Yves Le Conte ◽  
Silvio Erler

AbstractEuropean foulbrood (EFB), caused by Melissococcus plutonius, is a globally distributed bacterial brood disease affecting Apis mellifera larvae. There is some evidence, even if under debate, that spreading of the disease within the colony is prevented by worker bees performing hygienic behaviour, including detection and removal of infected larvae. Olfactory cues (brood pheromones, signature mixtures, diagnostic substances) emitted by infected individuals may play a central role for hygienic bees to initiate the disease-specific behaviour. However, the mechanisms of cue detection and brood removal, causing hygienic behaviour in EFB affected colonies, are poorly understood. Here, coupled gas chromatography-mass spectrometry (GC–MS) was used to detect disease-specific substances, changes in cuticular hydrocarbon (CHC) profiles, and brood ester pheromones (BEPs) of honey bee larvae artificially infected with M. plutonius. Although no diagnostic substances were found in significant quantities, discriminant analysis revealed specific differences in CHC and BEP profiles of infected and healthy larvae. β-Ocimene, a volatile brood pheromone related to starvation and hygienic behaviour, was present in all larvae with highest quantities in healthy young larvae; whereas oleic acid, a non-volatile necromone, was present only in old infected larvae. Furthermore, γ-octalactone (newly discovered in A. mellifera in this study) was detectable in trace amounts only in infected larvae. We propose that the deviation from the olfactory profile of healthy brood is supposed to trigger hygienic behaviour in worker bees. To confirm the relevance of change in the chemical bouquet (CHCs, BEPs, γ-octalactone, etc.), a field colony bioassay is needed, using healthy brood and hygienic bees to determine if bouquet changes elicit hygienic behaviour.

EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Catherine M. Mueller ◽  
Cameron Jack ◽  
Ashley N. Mortensen ◽  
Jamie D. Ellis

European foulbrood is a bacterial disease that affects Western honey bee larvae. It is a concern to beekeepers everywhere, though it is less serious than American foulbrood because it does not form spores, which means that it can be treated. This 7-page fact sheet written by Catherine M. Mueller, Cameron J. Jack, Ashley N. Mortensen, and Jamie Ellis and published by the UF/IFAS Entomology and Nematology Department describes the disease and explains how to identify it to help beekeepers manage their colonies effectively and prevent the spread of both American and European foulbrood.https://edis.ifas.ufl.edu/in1272


2020 ◽  
Author(s):  
Cristian M. Aurori ◽  
Alexandru‐Ioan Giurgiu ◽  
Benjamin H. Conlon ◽  
Chedly Kastally ◽  
Daniel S. Dezmirean ◽  
...  

1993 ◽  
Vol 202 (3) ◽  
pp. 176-180 ◽  
Author(s):  
Klaus Hartfelder ◽  
Sibele Oliveira Tozetto ◽  
Anna Rachinsky

1955 ◽  
Vol 48 (1) ◽  
pp. 43-44 ◽  
Author(s):  
A. S. Michael ◽  
M. Abramovitz
Keyword(s):  

2021 ◽  
Author(s):  
Yuki Mitaka ◽  
Tadahide Fujita

Abstract Chemical communication underlies the sophisticated colony organization of social insects. In these insects, cuticular hydrocarbons (CHCs) play central roles in nestmate, task, and caste recognition, which contribute to maintenance of the social and reproductive division of labor. Queen-specific CHCs reflect queen fertility status and function as a queen recognition pheromone, triggering aggregation responses around the queens. However, there are only a few studies about the royal recognition mechanism in termites, and particularly, no study has reported about queen-specific CHCs in the species using asexual queen succession (AQS) system, in which the primary queen is replaced by neotenic queens produced parthenogenetically. In this study, we identified the CHC pheromone for neotenic queen recognition in the AQS termite species Reticulitermes speratus. Gas chromatography-mass spectrometry analyses revealed that the relative amount of n-pentacosane was disproportionately greater in the CHC profiles of queens than in the CHC profiles of kings, soldiers, and workers. Furthermore, we investigated the cuticular chemicals of the queen aggregate workers; bioassays demonstrated that n-pentacosane shows a worker arrestant activity in the presence of workers’ cuticular extract. These results suggest that R. speratus workers identify whether each individual is a neotenic queen by recognizing the relatively higher ratio of n-pentacosane in the conspecific CHC background. Moreover, they suggest that termites have evolved queen recognition behavior, independently of social hymenopterans.


Apidologie ◽  
1998 ◽  
Vol 29 (6) ◽  
pp. 569-578 ◽  
Author(s):  
Camilla J. Brødsgaard ◽  
Wolfgang Ritter ◽  
Henrik Hansen

2006 ◽  
Vol 56 (3) ◽  
pp. 501-511 ◽  
Author(s):  
Elke Genersch ◽  
Eva Forsgren ◽  
Jaana Pentikäinen ◽  
Ainura Ashiralieva ◽  
Sandra Rauch ◽  
...  

A polyphasic taxonomic study of the two subspecies of Paenibacillus larvae, Paenibacillus larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens, supported the reclassification of the subspecies into one species, Paenibacillus larvae, without subspecies separation. Our conclusions are based on the analysis of six reference strains of P. larvae subsp. pulvifaciens and three reference strains and 44 field isolates of P. larvae. subsp. larvae. The latter originated from brood or honey of clinically diseased honey bee colonies or from honey of both clinically diseased and asymptomatic colonies from Sweden, Finland and Germany. Colony and spore morphology, as well as the metabolism of mannitol and salicin, did not allow a clear identification of the two subspecies and SDS-PAGE of whole-cell proteins did not support the subspecies differentiation. For genomic fingerprinting, repetitive element-PCR fingerprinting using ERIC primers and PFGE of bacterial DNA were performed. The latter method is a high-resolution DNA fingerprinting method proven to be superior to most other methods for biochemical and molecular typing and has not previously been used to characterize P. larvae. ERIC-PCR identified four different genotypes, while PFGE revealed two main clusters. One cluster included most of the P. larvae subsp. larvae field isolates, as well as all P. larvae subsp. pulvifaciens reference strains. The other cluster comprised the pigmented variants of P. larvae subsp. larvae. 16S rRNA gene sequences were determined for some strains. Finally, exposure bioassays demonstrated that reference strains of P. larvae subsp. pulvifaciens were pathogenic for honey bee larvae, producing symptoms similar to reference strains of P. larvae subsp. larvae. In comparison with the type strain for P. larvae subsp. larvae, ATCC 9545T, the P. larvae subsp. pulvifaciens strains tested were even more virulent, since they showed a shorter LT100. An emended description of the species is given.


2017 ◽  
Vol 56 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Marinko Vilić ◽  
Ivana Tlak Gajger ◽  
Perica Tucak ◽  
Anamaria Štambuk ◽  
Maja Šrut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document