Sweeping-beam technique with electrons for large treatment areas as total skin irradiation

Author(s):  
Michael Schöpe ◽  
Jacob Sahlmann ◽  
Kathleen Lorenz ◽  
Anne Findeisen ◽  
Thomas Barthel ◽  
...  
Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Author(s):  
C. B. Carter ◽  
J. Rose ◽  
D. G. Ast

The hot-pressing technique which has been successfully used to manufacture twist boundaries in silicon has now been used to form tilt boundaries in this material. In the present study, weak-beam imaging, lattice-fringe imaging and electron diffraction techniques have been combined to identify different features of the interface structure. The weak-beam technique gives an overall picture of the geometry of the boundary and in particular allows steps in the plane of the boundary which are normal to the dislocation lines to be identified. It also allows pockets of amorphous SiO2 remaining in the interface to be recognized. The lattice-fringe imaging technique allows the boundary plane parallel to the dislocation to be identified. Finally the electron diffraction technique allows the periodic structure of the boundary to be evaluated over a large area - this is particularly valuable when the dislocations are closely spaced - and can also provide information on the structural width of the interface.


Author(s):  
J. M. Oblak ◽  
B. H. Kear

The “weak-beam” and systematic many-beam techniques are the currently available methods for resolution of closely spaced dislocations or other inhomogeneities imaged through strain contrast. The former is a dark field technique and image intensities are usually very weak. The latter is a bright field technique, but generally use of a high voltage instrument is required. In what follows a bright field method for obtaining enhanced resolution of partial dislocations at 100 KV accelerating potential will be described.A brief discussion of an application will first be given. A study of intermediate temperature creep processes in commercial nickel-base alloys strengthened by the Ll2 Ni3 Al γ precipitate has suggested that partial dislocations such as those labelled 1 and 2 in Fig. 1(a) are in reality composed of two closely spaced a/6 <112> Shockley partials. Stacking fault contrast, when present, tends to obscure resolution of the partials; thus, conditions for resolution must be chosen such that the phase shift at the fault is 0 or a multiple of 2π.


Author(s):  
R. Gotthardt ◽  
A. Horsewell ◽  
F. Paschoud ◽  
S. Proennecke ◽  
M. Victoria

Fusion reactor materials will be damaged by an intense field of energetic neutrons. There is no neutron source of sufficient intensity at these energies available at present, so the material properties are being correlated with those obtained in irradiation with other irradiation sorces. Irradiation with 600 MeV protons produces both displacement damage and impurities due to nuclear reactions. Helium and hydrogen are produced as gaseous impurities. Other metallic impurities are also created . The main elements of the microstructure observed after irradiation in the PIREX facility, are described in the following paragraphs.A. Defect clusters at low irradiation doses: In specimens irradiated to very low doses (1021-1024 protons.m-2), so that there is no superimposition of contrast, small defect clusters have been observed by the weak beam technique. Detailed analysis of the visible contrast (>0.5 nm diameter) revealed the presence of stacking fault tetrahedra, dislocation loops and a certain number of unidentified clusters . Typical results in Cu and Au are shown in Fig. 1.


2021 ◽  
Vol 130 ◽  
pp. 105810
Author(s):  
S.H. Moustafa ◽  
Gharieb A. Ali ◽  
M.I. Amer ◽  
E.R. Shaaban ◽  
M. Emam-Ismail ◽  
...  
Keyword(s):  

Author(s):  
Q. Wu ◽  
O.I. Craciunescu ◽  
A. Rodrigues ◽  
S.G. Meltsner ◽  
C. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document