Introgression of chromosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by genomic in situ hybridisation (GISH)

2001 ◽  
Vol 103 (5) ◽  
pp. 696-701 ◽  
Author(s):  
W. G. Morgan ◽  
I. P. King ◽  
S. Koch ◽  
J. A. Harper ◽  
H. M. Thomas

Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Q Yang ◽  
L Hanson ◽  
M D Bennett ◽  
I J Leitch

Allohexaploid wild oat, Avena fatua L. (Poaceae; 2n = 6x = 42), is one of the world's worst weeds, yet unlike some of the other Avena hexaploids, its genomic structure has been relatively little researched. Consequently, in situ hybridisation was carried out on one accession of A. fatua using an 18S-25S ribosomal DNA (rDNA) sequence and genomic DNA fromA. strigosa (AA-genome diploid) and A. clauda (CC-genome diploid) as probes. Comparing these results with those for other hexaploids studied previously: (i) confirmed that the genomic composition of A. fatua was similar to the other hexaploid Avena taxa (i.e., AACCDD), (ii) identified major sites of rDNA on three pairs of A/D-genome chromosomes, in common with other Avena hexaploids, and (iii) revealed eight chromosome pairs carrying intergenomic translocations between the A/D- and C-genomes in the accession studied. Based on karyotype structure, the identity of some of these recombinant chromosomes was proposed, and this showed that some of these could be divided into two types, (i) those common to all hexaploid Avena species analysed (3 translocations) and (ii) one translocation in this A. fatua accession not previously observed in reports on other hexaploid Avena species. If this translocation is found to be unique to A. fatua, then this information, combined with more traditional morphological data, will add support to the view that A. fatua is genetically distinct from other hexaploid Avena species and thus should retain its full specific status.Key words: wild oats, Avena, genomic in situ hybridisation (GISH), intergenomic translocations, ribosomal DNA.



Genome ◽  
2001 ◽  
Vol 44 (5) ◽  
pp. 929-935 ◽  
Author(s):  
L Barthes ◽  
A Ricroch

Monosomic alien addition lines (MAALs) are useful for assigning linkage groups to chromosomes. We examined whether the chromosomal rearrangements following the introduction of a single onion (Allium cepa) chromosome into the Allium fistulosum genome were produced by homeologous crossing over or by a nonreciprocal conversion event. Among the monosomic lines available, 17 were studied by fluorescent genomic in situ hybridisation, using total A. cepa genomic DNA as the probe and total A. fistulosum genomic DNA as the competitor. In this way, rearrangements such as chromosomal translocations between A. cepa and A. fistulosum were identified as terminal regions consisting of tandem DNA repeats. Homeologous crossing over between the two closely related genomes occurred in 4 of the 17 lines, suggesting that such events are not rare. On the basis of a detailed molecular cytogenetic characterisation, we identified true monosomic alien addition lines for A. cepa chromosomes 3, 4, 5, 7, and 8 that can reliably be used in genetic studies.Key words: chromatin transfer, genomic in situ hybridisation, GISH, monosomic alien addition lines, MAALs, Allium.



1997 ◽  
Vol 95 (8) ◽  
pp. 1239-1245 ◽  
Author(s):  
K. Fukui ◽  
R. Shishido ◽  
T. Kinoshita


Euphytica ◽  
2009 ◽  
Vol 171 (2) ◽  
pp. 273-282 ◽  
Author(s):  
A. Marasek-Ciolakowska ◽  
M. S. Ramanna ◽  
W. A. ter Laak ◽  
J. M. van Tuyl


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 468 ◽  
Author(s):  
Tae-Soo Jang ◽  
John Parker ◽  
Hanna Weiss-Schneeweiss

Supernumerary chromosomal segments (SCSs) represent additional chromosomal material that, unlike B chromosomes, is attached to the standard chromosome complement. The Prospero autumnale complex (Hyacinthaceae) is polymorphic for euchromatic large terminal SCSs located on the short arm of chromosome 1 in diploid cytotypes AA and B7B7, and tetraploid AAB7B7 and B6B6B7B7, in addition to on the short arm of chromosome 4 in polyploid B7B7B7B7 and B7B7B7B7B7B7 cytotypes. The genomic composition and evolutionary relationships among these SCSs have been assessed using fluorescence in situ hybridisation (FISH) with 5S and 35S ribosomal DNAs (rDNAs), satellite DNA PaB6, and a vertebrate-type telomeric repeat TTAGGG. Neither of the rDNA repeats were detected in SCSs, but most contained PaB6 and telomeric repeats, although these never spanned whole SCSs. Genomic in situ hybridisation (GISH) using A, B6, and B7 diploid genomic parental DNAs as probes revealed the consistently higher genomic affinity of SCSs in diploid hybrid B6B7 and allopolyploids AAB7B7 and B6B6B7B7 to genomic DNA of the B7 diploid cytotype. GISH results suggest a possible early origin of SCSs, especially that on chromosome 1, as by-products of the extensive genome restructuring within a putative ancestral P. autumnale B7 genome, predating the complex diversification at the diploid level and perhaps linked to B-chromosome evolution.



1999 ◽  
Vol 39 (6) ◽  
pp. 13-20 ◽  
Author(s):  
Philip L. Bond ◽  
Jürg Keller ◽  
Linda L. Blackall

Culturing bacteria from activated sludge with enhanced biological phosphorus removal (EBPR) has strongly implicated Acinetobacter with the process. However, using fluorescent in-situ hybridisation (FISH) probing to analyse microbial populations, we have shown evidence opposing this widespread belief. We describe the phosphorus (P) removing performance and microbial population analyses of sludges obtained in a laboratory scale EBPR reactor. Two sludges with extremely high P removing capabilities were examined, the P content of these sludges was 8.6% (P sludge) and 12.3% (S sludge) of the MLSS. Identification of bacteria using FISH probing indicated both sludges were dominated by microbes from the beta proteobacteria and high mol% G+C Gram positive bacteria. Acinetobacter could make up only a small proportion of the cells in these sludges. Sludge with extremely poor P removal (P content of 1.5%, referred to as T sludge) was then generated by reducing the P in the influent. Bacteria resembling the G-bacteria became abundant in this sludge and these were identified using FISH probing. The anaerobic transformations of the T and P sludges correlated well with that of the non-EBPR and EBPR biological models respectively, indicating that bacteria in the T sludge have the potential to inhibit P removal in EBPR systems.



Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 250
Author(s):  
Rebecca E O’Connor ◽  
Lucas G Kiazim ◽  
Claudia C Rathje ◽  
Rebecca L Jennings ◽  
Darren K Griffin

With demand rising, pigs are the world’s leading source of meat protein; however significant economic loss and environmental damage can be incurred if boars used for artificial insemination (AI) are hypoprolific (sub-fertile). Growing evidence suggests that semen analysis is an unreliable tool for diagnosing hypoprolificacy, with litter size and farrowing rate being more applicable. Once such data are available, however, any affected boar will have been in service for some time, with significant financial and environmental losses incurred. Reciprocal translocations (RTs) are the leading cause of porcine hypoprolificacy, reportedly present in 0.47% of AI boars. Traditional standard karyotyping, however, relies on animal specific expertise and does not detect more subtle (cryptic) translocations. Previously, we reported development of a multiple hybridisation fluorescence in situ hybridisation (FISH) strategy; here, we report on its use in 1641 AI boars. A total of 15 different RTs were identified in 69 boars, with four further animals XX/XY chimeric. Therefore, 4.5% had a chromosome abnormality (4.2% with an RT), a 0.88% incidence. Revisiting cases with both karyotype and FISH information, we reanalysed captured images, asking whether the translocation was detectable by karyotyping alone. The results suggest that chromosome translocations in boars may be significantly under-reported, thereby highlighting the need for pre-emptive screening by this method before a boar enters a breeding programme.



Sign in / Sign up

Export Citation Format

Share Document