scholarly journals Reduced tricarboxylic acid cycle flux in type 2 diabetes mellitus?

Diabetologia ◽  
2008 ◽  
Vol 51 (9) ◽  
pp. 1694-1697 ◽  
Author(s):  
P. Schrauwen ◽  
M. K. C. Hesselink
2020 ◽  
Vol 319 (6) ◽  
pp. C1011-C1019
Author(s):  
Kai Zou ◽  
Kristen Turner ◽  
Donghai Zheng ◽  
J. Matthew Hinkley ◽  
Benjamin A. Kugler ◽  
...  

The purpose of this study was to determine whether intramyocellular glucose partitioning was altered in primary human myotubes derived from severely obese women with type 2 diabetes. Human skeletal muscle cells were obtained from lean nondiabetic and severely obese Caucasian females with type 2 diabetes [body mass index (BMI): 23.6 ± 2.6 vs. 48.8 ± 1.9 kg/m2, fasting glucose: 86.9 ± 1.6 vs. 135.6 ± 12.0 mg/dL, n = 9/group]. 1-[14C]-Glucose metabolism (glycogen synthesis, glucose oxidation, and nonoxidized glycolysis) and 1- and 2-[14C]-pyruvate oxidation were examined in fully differentiated myotubes under basal and insulin-stimulated conditions. Tricarboxylic acid cycle intermediates were determined via targeted metabolomics. Myotubes derived from severely obese individuals with type 2 diabetes exhibited impaired insulin-mediated glucose partitioning with reduced rates of glycogen synthesis and glucose oxidation and increased rates of nonoxidized glycolytic products, when compared with myotubes derived from the nondiabetic individuals ( P < 0.05). Both 1- and 2-[14C]-pyruvate oxidation rates were significantly blunted in myotubes from severely obese women with type 2 diabetes compared with myotubes from the nondiabetic controls. Lastly, concentrations of tricarboxylic acid cycle intermediates, namely, citrate ( P < 0.05), cis-aconitic acid ( P = 0.07), and α-ketoglutarate ( P < 0.05), were lower in myotubes from severely obese women with type 2 diabetes. These data suggest that intramyocellular insulin-mediated glucose partitioning is intrinsically altered in the skeletal muscle of severely obese women with type 2 diabetes in a manner that favors the production of glycolytic end products. Defects in pyruvate dehydrogenase and tricarboxylic acid cycle may be responsible for this metabolic derangement associated with type 2 diabetes.


2018 ◽  
Vol 103 (12) ◽  
pp. 4357-4364 ◽  
Author(s):  
Jian-Jun Liu ◽  
Sylvia Liu ◽  
Resham L Gurung ◽  
Jianhong Ching ◽  
Jean-Paul Kovalik ◽  
...  

2015 ◽  
Vol 21 ◽  
pp. 280-281
Author(s):  
Medha Munshi ◽  
Jasvinder Gill ◽  
Jason Chao ◽  
Elena Nikonova ◽  
Andreas Stuhr ◽  
...  

2015 ◽  
Vol 21 ◽  
pp. 106
Author(s):  
Franco Grimaldi ◽  
Laura Tonutti ◽  
Claudia Cipri ◽  
Cecilia Motta ◽  
Maria Antonietta Pellegrini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document