scholarly journals Discrete systems in thermal physics and engineering: a glance from non-equilibrium thermodynamics

Author(s):  
W. Muschik

AbstractNon-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees the compatibility of the accompanying processes with the non-equilibrium entropy is proved. The non-equilibrium entropy is defined as a state function on the non-equilibrium state space containing the contact temperature as a non-equilibrium variable. If the entropy production does not depend on the internal energy, the contact temperature changes into the thermostatic temperature also in non-equilibrium, a fact which allows to use temperature as a primitive concept in non-equilibrium. The dissipation inequality is revisited, and an efficiency of generalized cyclic processes beyond the Carnot process is achieved.

Author(s):  
Wolfgang Muschik

Meixner's historical remark in 1969 "... it can be shown that the concept of entropy in the absence of equilibrium is in fact not only questionable but that it cannot even be defined...." is investigated from today's insight. Several statements --such as the three laws of phenomenological thermodynamics, the embedding theorem and the adiabatical uniqueness-- are used to get rid of non-equilibrium entropy as a primitive concept. In this framework, Clausius inequality of open systems can be derived by use of the defining inequalities which establish the non-equilibrium quantities contact temperature and non-equilibrium molar entropy which allow to describe the interaction between the Schottky system and its controlling equilibrium environment.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 740 ◽  
Author(s):  
Wolfgang Muschik

Meixner’s historical remark in 1969 “... it can be shown that the concept of entropy in the absence of equilibrium is in fact not only questionable but that it cannot even be defined....” is investigated from today’s insight. Several statements—such as the three laws of phenomenological thermodynamics, the embedding theorem and the adiabatical uniqueness—are used to get rid of non-equilibrium entropy as a primitive concept. In this framework, Clausius inequality of open systems can be derived by use of the defining inequalities which establish the non-equilibrium quantities contact temperature and non-equilibrium molar entropy which allow to describe the interaction between the Schottky system and its controlling equilibrium environment.


1994 ◽  
Author(s):  
Dennis Keefer ◽  
Robert Rhodes ◽  
Trevor Moeller ◽  
David Burtner

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marco Baity-Jesi ◽  
Enrico Calore ◽  
Andrés Cruz ◽  
Luis Antonio Fernandez ◽  
José Miguel Gil-Narvion ◽  
...  

AbstractExperiments featuring non-equilibrium glassy dynamics under temperature changes still await interpretation. There is a widespread feeling that temperature chaos (an extreme sensitivity of the glass to temperature changes) should play a major role but, up to now, this phenomenon has been investigated solely under equilibrium conditions. In fact, the very existence of a chaotic effect in the non-equilibrium dynamics is yet to be established. In this article, we tackle this problem through a large simulation of the 3D Edwards-Anderson model, carried out on the Janus II supercomputer. We find a dynamic effect that closely parallels equilibrium temperature chaos. This dynamic temperature-chaos effect is spatially heterogeneous to a large degree and turns out to be controlled by the spin-glass coherence length ξ. Indeed, an emerging length-scale ξ* rules the crossover from weak (at ξ ≪ ξ*) to strong chaos (ξ ≫ ξ*). Extrapolations of ξ* to relevant experimental conditions are provided.


2006 ◽  
Author(s):  
S. Pace ◽  
G. Filatrella ◽  
G. Grimaldi ◽  
A. Nigro ◽  
M. G. Adesso

2015 ◽  
Vol 220-221 ◽  
pp. 917-921 ◽  
Author(s):  
Mykola Chausov ◽  
Pavlo Maruschak ◽  
Olegas Prentkovskis ◽  
Andriy Pylypenko ◽  
Valentyn Berezin ◽  
...  

Using an original experimental methodology and software for contactless investigation into strains applying the method of digital image correlation, conditions for DNP realization in the test setup with pre-set rigidity have been found. Strain velocities have been determined to be equal to 2...10 s–1 in the processes of forming and developing a dissipative structure of heat resistant steel under the DNP (dynamic non-equilibrium process).


2007 ◽  
Vol 86 ◽  
pp. 011001 ◽  
Author(s):  
Zoran Petrović ◽  
Nigel Mason ◽  
Satoshi Hamaguchi ◽  
Marija Radmilović-Radjenović

2017 ◽  
Vol 19 (30) ◽  
pp. 19590-19600 ◽  
Author(s):  
G. Capano ◽  
T. J. Penfold ◽  
M. Chergui ◽  
I. Tavernelli

On-the-fly excited state molecular dynamics is a valuable method for studying non-equilibrium processes in excited states and is beginning to emerge as a mature approach much like its ground state counterparts.


Sign in / Sign up

Export Citation Format

Share Document