scholarly journals Second Law and Non-Equilibrium Entropy of Schottky Systems --Doubts and Verification--

Author(s):  
Wolfgang Muschik

Meixner's historical remark in 1969 "... it can be shown that the concept of entropy in the absence of equilibrium is in fact not only questionable but that it cannot even be defined...." is investigated from today's insight. Several statements --such as the three laws of phenomenological thermodynamics, the embedding theorem and the adiabatical uniqueness-- are used to get rid of non-equilibrium entropy as a primitive concept. In this framework, Clausius inequality of open systems can be derived by use of the defining inequalities which establish the non-equilibrium quantities contact temperature and non-equilibrium molar entropy which allow to describe the interaction between the Schottky system and its controlling equilibrium environment.

Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 740 ◽  
Author(s):  
Wolfgang Muschik

Meixner’s historical remark in 1969 “... it can be shown that the concept of entropy in the absence of equilibrium is in fact not only questionable but that it cannot even be defined....” is investigated from today’s insight. Several statements—such as the three laws of phenomenological thermodynamics, the embedding theorem and the adiabatical uniqueness—are used to get rid of non-equilibrium entropy as a primitive concept. In this framework, Clausius inequality of open systems can be derived by use of the defining inequalities which establish the non-equilibrium quantities contact temperature and non-equilibrium molar entropy which allow to describe the interaction between the Schottky system and its controlling equilibrium environment.


Author(s):  
W. Muschik

AbstractNon-equilibrium processes in Schottky systems generate by projection onto the equilibrium subspace reversible accompanying processes for which the non-equilibrium variables are functions of the equilibrium ones. The embedding theorem which guarantees the compatibility of the accompanying processes with the non-equilibrium entropy is proved. The non-equilibrium entropy is defined as a state function on the non-equilibrium state space containing the contact temperature as a non-equilibrium variable. If the entropy production does not depend on the internal energy, the contact temperature changes into the thermostatic temperature also in non-equilibrium, a fact which allows to use temperature as a primitive concept in non-equilibrium. The dissipation inequality is revisited, and an efficiency of generalized cyclic processes beyond the Carnot process is achieved.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 648
Author(s):  
Milivoje M. Kostic

The challenges and claims of hypothetical violations of the Second Law of thermodynamics have been a topic of many scientific, philosophical and social publications, even in the most prestigious scientific journals. Fascination with challenging the Second Law has further accelerated throughout the development of statistical and quantum physics, and information theory. It is phenomenologically reasoned here that non-equilibrium, useful work-energy potential is always dissipated to heat, and thus thermodynamic entropy (a measure of thermal disorder, not any other disorder) is generated always and everywhere, at any scale without exception, including life processes, open systems, micro-fluctuations, gravity or entanglement. Furthermore, entropy cannot be destroyed by any means at any scale (entropy is conserved in ideal, reversible processes and irreversibly generated in real processes), and thus, entropy cannot overall decrease, but only overall increase. Creation of ordered structures or live species always dissipate useful energy and generate entropy, without exception, and thus without Second Law violation. Entropy destruction would imply spontaneous increase in non-equilibrium, with mass-energy flux displacement against cause-and-effect, natural forces, as well as negate the reversible existence of the very equilibrium. In fact, all resolved challengers’ paradoxes and misleading violations of the Second Law to date have been resolved in favor of the Second Law and never against. We are still to witness a single, still open Second Law violation, to be confirmed.


2020 ◽  
Vol 45 (2) ◽  
pp. 121-132
Author(s):  
Daniel P. Sheehan

AbstractCanonical statistical mechanics hinges on two quantities, i. e., state degeneracy and the Boltzmann factor, the latter of which usually dominates thermodynamic behaviors. A recently identified phenomenon (supradegeneracy) reverses this order of dominance and predicts effects for equilibrium that are normally associated with non-equilibrium, including population inversion and steady-state particle and energy currents. This study examines two thermodynamic paradoxes that arise from supradegeneracy and proposes laboratory experiments by which they might be resolved.


2017 ◽  
Vol 65 (6-8) ◽  
pp. 1700032 ◽  
Author(s):  
V. Špička ◽  
B. Velický ◽  
A. Kalvová

Author(s):  
Elliott H. Lieb ◽  
Jakob Yngvason

In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an ‘entropy meter’. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems.


1998 ◽  
Vol 59 (4) ◽  
pp. 619-627 ◽  
Author(s):  
M. de HAAN ◽  
C. D. GEORGE

An understanding of the mechanisms leading to the symmetry breaking of the dynamical description of a large system with respect to the direction of time is necessary, but not sufficient to ensure the finding of a functional of the state of the system that would satisfy the requirements placed by the Second Law of Thermodynamics upon the non-equilibrium entropy S.


2008 ◽  
Vol 86 (2) ◽  
pp. 369-377 ◽  
Author(s):  
J Anacleto ◽  
J M Ferreira ◽  
A Anacleto

We stress the advantages of heat and work reservoirs in the formalism of Thermodynamics and using an illustrative example show the need to reformulate the concepts of heat and work to avoid inconsistencies, namely, with regard to the Second Law. To deal with this problem, we use the concept of identical thermodynamical processes and obtain the condition for two such processes to be identical even when the system neighbourhood as a whole cannot be treated as a reservoir. The aforementioned concept is then applied to obtain a standardized definition of heat and work as well as a generalization of the well-known Clausius inequality. Finally, we return to the example given earlier to corroborate the effectiveness of our results.PACS Nos.: 05.70.–a, 44.90.+c, 65.40.Gr


Sign in / Sign up

Export Citation Format

Share Document