scholarly journals Difference in balance measures between patients with chronic ankle instability and patients after an acute ankle inversion trauma

2010 ◽  
Vol 18 (5) ◽  
pp. 601-606 ◽  
Author(s):  
J. S. de Vries ◽  
I. Kingma ◽  
L. Blankevoort ◽  
C. N. van Dijk
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Patrick Fuerst ◽  
Albert Gollhofer ◽  
Markus Wenning ◽  
Dominic Gehring

Abstract Background The application of ankle braces is an effective method for the prevention of recurrent ankle sprains. It has been proposed that the reduction of injury rates is based on the mechanical stiffness of the brace and on beneficial effects on proprioception and neuromuscular activation. Yet, how the neuromuscular system responds to the application of various types of ankle braces during highly dynamic injury-relevant movements is not well understood. Enhanced stability of the ankle joint seems especially important for people with chronic ankle instability. We therefore aimed to analyse the effects of a soft and a semi-rigid ankle brace on the execution of highly dynamic 180° turning movements in participants with and without chronic ankle instability. Methods Fifteen participants with functional ankle instability, 15 participants with functional and mechanical ankle instability and 15 healthy controls performed 180° turning movements in reaction to light signals in a cross-sectional descriptive laboratory study. Ankle joint kinematics and kinetics as well as neuromuscular activation of muscles surrounding the ankle joint were determined. Two-way repeated measures analyses of variance and post-hoc t-tests were calculated. Results Maximum ankle inversion angles and velocities were significantly reduced with the semi-rigid brace in comparison to the conditions without a brace and with the soft brace (p ≤ 0.006, d ≥ 0.303). Effect sizes of these reductions were larger in participants with chronic ankle instability than in healthy controls. Furthermore, peroneal activation levels decreased significantly with the semi-rigid brace in the 100 ms before and after ground contact. No statistically significant brace by group effects were found. Conclusions Based on these findings, we argue that people with ankle instability in particular seem to benefit from a semi-rigid ankle brace, which allows them to keep ankle inversion angles in a range that is comparable to values of healthy people. Lower ankle inversion angles and velocities with a semi-rigid brace may explain reduced injury incidences with brace application. The lack of effect of the soft brace indicates that the primary mechanism behind the reduction of inversion angles and velocities is the mechanical resistance of the brace in the frontal plane.


2009 ◽  
Vol 18 (3) ◽  
pp. 375-388 ◽  
Author(s):  
Lindsay K. Drewes ◽  
Patrick O. McKeon ◽  
Gabriele Paolini ◽  
Patrick Riley ◽  
D. Casey Kerrigan ◽  
...  

Context:Kinematic patterns during gait have not been extensively studied in relation to chronic ankle instability (CAI).Objective:To determine whether individuals with CAI demonstrate altered ankle kinematics and shank-rear-foot coupling compared with controls during walking and jogging.Design:Case control.Setting:Motion-analysis laboratory.Participants:7 participants (3 men, 4 women) suffering from CAI (age 24.6 ± 4.2 y, height 172.6 ± 9.4 cm, mass 70.9 ± 8.1 kg) and 7 (3 men, 4 women) healthy, matched controls (age 24.7 ± 4.5 y, height 168.2 ± 5.9 cm, mass 66.5 ± 9.8 kg).Interventions:Subjects walked and jogged on a treadmill while 3-dimensional kinematics of the lower extremities were captured.Main Outcome Measures:The positions of rear-foot inversion–eversion and shank rotation were calculated throughout the gait cycle. Continuous relative-phase angles between these segments were calculated to assess coupling.Results:The CAI group demonstrated more rear-foot inversion and shank external rotation during walking and jogging. There were differences between groups in shank-rear-foot coupling during terminal swing at both speeds.Conclusions:Altered ankle kinematics and joint coupling during the terminal-swing phase of gait may predispose a population with CAI to ankle-inversion injuries. Less coordinated movement during gait may be an indication of altered neuromuscular recruitment of the musculature surrounding the ankle as the foot is being positioned for initial contact.


2019 ◽  
Vol 64 ◽  
pp. 133-141 ◽  
Author(s):  
Jeffrey D. Simpson ◽  
Ethan M. Stewart ◽  
Alana J. Turner ◽  
David M. Macias ◽  
Samuel J. Wilson ◽  
...  

2021 ◽  

Background and objective: Numerous tape applications have been used in patients with chronic ankle instability (CAI). However, the effect of prophylactic ankle taping on lower-extremity kinematics is still not well understood. This study aimed to investigate the effects of traditional taping, fibular repositioning taping, and kinesiology taping on the peak angles of the lower extremities in patients with CAI. Materials and Methods: A total of 14 men (age, 24.07 ± 4.46 years; height, 175.06 ± 5.10 cm; weight, 82.24 ± 10.38 kg (mean ± standard deviation)) with CAI identified using screening questionnaires (Cumberland Ankle Instability Tool, 17.64 ± 4.14; Foot and Ankle Ability Measure (FAAM) Activity of Daily Living, 86.69 ± 6.71; and FAAM Sports Subscale, 75.45 ± 6.70) participated. The peak angles of the hip, knee, and ankle joints during a stop-jump task, with and without tape application, were collected using a three-dimensional motion system. Results: The following peak angles were measured: hip flexion, hip adduction (ADD), hip internal rotation (IR), knee flexion, knee abduction (ABD), knee IR, ankle dorsiflexion, ankle inversion, and ankle ADD. No significant differences were observed in the peak angle of each joint across conditions (hip flexion, F(3,39) = 0.85, p = 0.47; hip ADD, F(1.729,22.478) = 1.90, p = 0.18; hip IR, F(1.632,21.220) = 0.67, p = 0.49; knee flexion, F(3,39) = 1.24, p = 0.15; knee ABD, F(1.691,21.982) = 1.24, p = 0.30; knee IR, F(1.830,23.794) = 0.44, p = 0.63; ankle dorsiflexion, F(3,39) = 0.66, p = 0.58; ankle inversion, F(1.385,18.007) = 0.85, p = 0.40; ankle ADD, F(1.865,24.249) = 2.23, p = 0.13). Conclusion: The application of different taping techniques did not significantly change the peak joint angles of the lower extremities during a stop-jump task. These results contradict those of previous studies, suggesting that ankle taping restricts joint range of motion.


2020 ◽  
pp. 1-7
Author(s):  
Yumeng Li ◽  
Jupil Ko ◽  
Marika A. Walker ◽  
Cathleen N. Brown ◽  
Kathy J. Simpson

The purpose of the present study was to examine the effect of chronic ankle instability (CAI) on lower-extremity joint coordination and stiffness during landing. A total of 21 female participants with CAI and 21 pair-matched healthy controls participated in the study. Lower-extremity joint kinematics were collected using a 7-camera motion capture system, and ground reaction forces were collected using 2 force plates during drop landings. Coupling angles were computed based on the vector coding method to assess joint coordination. Coupling angles were compared between the CAI and control groups using circular Watson–Williams tests. Joint stiffness was compared between the groups using independent t tests. Participants with CAI exhibited strategies involving altered joint coordination including a knee flexion dominant pattern during 30% and 70% of their landing phase and a more in-phase motion pattern between the knee and hip joints during 30% and 40% and 90% and 100% of the landing phase. In addition, increased ankle inversion and knee flexion stiffness were observed in the CAI group. These altered joint coordination and stiffness could be considered as a protective strategy utilized to effectively absorb energy, stabilize the body and ankle, and prevent excessive ankle inversion. However, this strategy could result in greater mechanical demands on the knee joint.


Sign in / Sign up

Export Citation Format

Share Document